Cho a,b,c\(\ge\)0 và \(a^2+b^2+c^2=1.\)CMR:\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{1+a}-1+\frac{b}{1+b}-1+\frac{c}{1+c}-1\)
\(=-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)
\(\le-\frac{9}{3+a+b+c}=-\frac{9}{4}\)
\(\Rightarrow\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le-\frac{9}{4}+3=\frac{3}{4}\)
Ta có:
\(B=-2x^2+8x-15\\ \Leftrightarrow-2\left(x^2-4x+\frac{15}{2}\right)\\ \Leftrightarrow-2\left(x^2-4x+4-4+\frac{15}{2}\right)\\ \Leftrightarrow-2\left[\left(x-2\right)^2+\frac{7}{2}\right]\\ \Leftrightarrow-2\left(x-2\right)^2-7\)
Vì \(\left(x-2\right)^2\ge0\) nên \(-2\left(x-2\right)^2\ge0\) \(\Rightarrow B\ge7\)
Vậy minB = 7 (khi x = 2)
Vì x3 +y3 +z3 =495 < 83 =>1 \(\le x,y,z\le7\)
Áp dụng đẳng thức x3+y3+z3 + 3xyz = (x+y+z)(x2+y2+z2-xy-yz-xz)
=>x3+y3+z3 = (x+y+z)(x2+y2+z2-xy-yz-xz) - 3xyz
<=> 495 = 15 (x2+y2+z2-xy-yz-xz) - 3xyz
<=> 165 = 5(x2+y2+z2-xy-yz-xz) - xyz
=>xyz chia hết cho 5 , vì \(\le x,y,z\le7\) và x,y,z có vai trò như nhau , ta giả sử x= 5 . Thay vào phương trình , ta suy ra
yz=21 và y+z=10 =>y=3 , z=7 hoặc z=3 , y=7 , do vai trò của x,y,z như nhau nên a tìm được (x,y,z) = (5,3,7) và các hoán vị
Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)
\(\Rightarrow15=x+y+z\ge3z\)
\(\Leftrightarrow0< z\le5\)
Với \(z=1\) thì ta có
\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm
Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.
Tổng của số bị chia, số chia và thương là : 134 x 3 = 402
Số chia là : 60 : 2 = 30
Tổng của số bị chia và thương là: 402 – 30 = 372
Cho ta biết Số bị chia gấp 30 lần Thương.
Tổng số phần bằng nhau: 30 + 1 = 31 (phần)
Thương là: 372 : 31 = 12
Số bị chia: 30 x 12 = 360
Đáp số: 360 : 30 = 12
Chắc chắn là \(a^2+b^2+c^2=3\) rồi, thử \(a=b=c=\frac{1}{\sqrt{3}}\) là rõ
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\)
Ta có BĐT cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}\)
\(\Rightarrow VT\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}=\frac{9}{6}=\frac{3}{2}=VP\)
Đẳng thức xảy ra khi \(a=b=c=1\)
\(a^2+b^2+c^2=1\) hay \(a^2+b^2+c^2=3\)