K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Bạn câu hỏi sau ghi rõ đề ra nhé ghi như thế thì ai mà hiểu được 

A=\(4\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right).\left(4x^2+1\right)\)

\(=4.\left(x^2-\frac{1}{4}\right).\left(4x^2+1\right)\)

Rồi giờ ngồi khai triển ra rồi tính nhé bạn

:) chắc là mình hiểu lộn đề của bạn hay sao ý

:) bạn cứ tính ra nhé sử dụng hằng đẳng thức và một số công thức tính toán là sẽ tính được

Ta có : \(\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right).\left(4x^2+1\right)\)

\(=\left(x^2-\frac{1}{4}\right)\left(4x^2+1\right)\)

\(=4x^4-x^2+x^2-\frac{1}{4}=4x^4-\frac{1}{4}\)

29 tháng 5 2018

mình biến đổi bước xy+yz+zx=3xyz roi nhe 1/x+1/y+1/z=3

29 tháng 5 2018

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\)

Lại có: \(\sqrt{z}\le\frac{z+1}{2}\)

\(\Rightarrow\frac{x^3}{x^2+z}\ge x-\frac{z+1}{4}\)

Tương tự cộng vào ta có: 

\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)

Lại có: \(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

\(\ge VT\ge\frac{3}{4}.3-\frac{3}{4}=1,5\)

Dấu = xảy ra khi x=y=z=1

29 tháng 5 2018

Cạnh hình vuông là \(\sqrt{4}=2\) cm

Theo định lý Pitago với tam giác vuông ta có độ dài đường chéo là

\(\sqrt{2^2+2^2}=2\sqrt{2}\)

Vậy độ dài đường chéo là \(2\sqrt{2}\)

Ta thấy: \(4=2\cdot2\)

\(\rightarrow\)Cạnh hình vuông có độ dài là 2 cm.

( Hình minh họa )

2 2 A B C

Ta thấy: Đường chéo chia đôi hình vuông tạo thành 1 tam giác vuông (như hình vẽ )

\(\rightarrow\)Đường chéo của hình vuông cũng là cạnh huyền của tam giác.

Áp dụng định lí Py-ta-go, xét tam giác ABC vuông tại B, ta có:

\(AC^2=AB^2+BC^2=2^2+2^2\)\(=4+4=8\left(cm\right)\)

\(\Rightarrow\)\(AC=\sqrt{8}\approx3\)

Vậy đường chéo của hình vuông có độ dài \(\approx\)3.

28 tháng 5 2018

\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)

\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)

Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow abc\le\frac{1}{27}\)

\(\Rightarrow\frac{1}{9abc}\ge3\)

Do đó ta có: 

\(A\ge\frac{9}{7}+3=\frac{30}{7}\)

28 tháng 5 2018

A B C M D E

a) \(\frac{MB}{EC}=\frac{DB}{MC}\)

\(\Leftrightarrow MB.MC=EC.DB\)

Mà tg ABC cân tại A => MC = MB

=> \(BM^2=BD.CE\)(đpcm)

b) Xét tg MDE và BDM

\(\widehat{MDE}=\widehat{BDM}\)(gt)

\(\widehat{MDB}=\widehat{EDM}\)(gt)

\(\Rightarrow\Delta MDE~\Delta BDM\)

28 tháng 5 2018

A B C D E M

a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)

\(\Rightarrow BM^2=BD.CE\)

b) \(\widehat{BMD}=\widehat{MEC}\)\(\Delta DBM\)và \(\Delta MCE\)đồng dạng)

Mà BME là góc ngoài tam giác MEC

=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)

\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)

Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)

Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)

Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)

28 tháng 5 2018

\(\Rightarrow-6>=\left(x^2-4x+1\right)\left(x^2-4x+5\right)=\left(x^2-4x\right)^2+5\left(x^2-4x\right)+x^2-4x+5\)

\(=\left(x^2-4x\right)^2+6\left(x^2-4x\right)+9-4=\left(x^2-4x\right)^2+2\cdot3\left(x^2-4x\right)+3^2-4\)

\(=\left(x^2-4x+3\right)^2-4\)

\(\Rightarrow\left(x^2-4x+3\right)^2-4< =-6\Rightarrow\left(x^2-4x+3\right)^2< =-2\)

vì \(\left(x^2-4x+3\right)^2>=0\Rightarrow\left(x^2-4x+3\right)^2< =-2\)vô lí \(\Rightarrow x\in\varnothing\)

28 tháng 5 2018

Ta thấy: \(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Thay \(x+y+z=1;x^3+y^3+z^3=1\)ta được:

\(1-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\Leftrightarrow-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)

Xét trường hợp: \(x=-y;\)thay vào đẳng thức: \(x+y+z=1\Rightarrow z=1\)

Do \(x=-y\Rightarrow x^{2017}=-y^{2017}\Rightarrow x^{2017}+y^{2017}=0\)(Số mũ lẻ)

Khi đó \(A=x^{2017}+y^{2017}+z^{2017}=0+z^{2017}\)

Lại có \(z=1\Rightarrow A=0+1=1.\)

Lập luận tương tự với 2 TH còn lại.

Vậy \(A=1.\)

6 tháng 6 2018

\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{-a^2}{\left(a-b\right)\left(c-a\right)}+\frac{-b^2}{\left(b-c\right)\left(a-b\right)}+\frac{-c^2}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{\left(-a^2\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(-b^2\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{-a^2b+ca^2-b^2c+ab^2-c^2a+bc^2}{-a^2b-c^2a+ca^2-b^2c+ab^2+bc^2}=1\)

Vậy \(P=1.\)

28 tháng 5 2018

a) Từ đề bài \(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)     \(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)-ab\left(x^2+y^2\right)^2=0\)

\(\Leftrightarrow b^2x^4-2abx^2y^2+a^2y^4=0\)

\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)       \(\Rightarrow bx^2=ay^2\) (ĐPCM)

b) Từ a \(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\) Áp dụng DTSBN ta có : 

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\) hay \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2018}}{a^{1004}}=\frac{y^{2018}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)    \(\Rightarrow\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\) (ĐPCM)