cho các đa thức
f(x) = x^2 - (m-1)x+3m-2
g(x)= x^2 -2 (m+1) x-5m+1
h(x) = -2x^2 +mx - 7m +3
Tìm m biết :
a) đa thức f(x) có nghiệm là -1
b) đa thức g(x) có nghiệm là 2
c) đa thức h(x) có nghiệm là -1
d) f(1) = g(2) ; g(1) =h (-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)
\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)
b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)
c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)
\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)
Ta thấy:
\(11^{1979}< 11^{1980}\)
\(11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
Và:
\(37^{1320}=\left(37^2\right)^{660}=1369^{660}\)
Mà: \(1331^{660}< 1369^{660}\)
\(\Rightarrow11^{1979}< 37^{1320}\)
Để giải phương trình này, chúng ta có thể bắt đầu bằng cách khai triển cả hai vế:
(4x)^2 = (x + 1)^2
16x^2 = (x + 1)(x + 1)
Tiếp theo, chúng tôi có thể phân phối các điều khoản ở phía bên phải:
16x^2 = x^2 + x + x + 1
Đơn giản hóa hơn nữa:
16x^2 = x^2 + 2x + 1
Bây giờ, hãy chuyển tất cả các số hạng sang một bên để thiết lập phương trình bằng 0:
16x^2 - x^2 - 2x - 1 = 0
Kết hợp các điều khoản như:
15x^2 - 2x - 1 = 0
Đây là một phương trình bậc hai. Chúng ta có thể giải nó bằng cách chia thành thừa số, hoàn thành bình phương hoặc sử dụng công thức bậc hai. Hãy sử dụng công thức bậc hai:
x = (-b ± √(b^2 - 4ac)) / (2a)
Trong trường hợp này, a = 15, b = -2 và c = -1. Thay thế các giá trị này vào công thức:
x = (-(-2) ± √((-2)^2 - 4(15)(-1))) / (2(15))
Đơn giản hóa:
x = (2 ± √(4 + 60)) / 30
x = (2 ± √64)/30
x = (2 ± 8)/30
Điều này cho chúng ta hai giải pháp khả thi:
x = (2 + 8) / 30 = 10/30 = 1/3
x = (2 - 8)/30 = -6/30 = -1/5
Do đó, các nghiệm của phương trình là x = 1/3 và x = -1/5.
\(16x^2=\left(x+1\right)^2\)
\(16x^2=x^2+2\times x\times1+1^2\)
\(16x^2=x^2+2x+1\)
\(16x^2-x^2-2x-1=0\)
\(15x^2-2x-1=0\)
\(15x^2+3x-5x-1=0\)
\(3x\left(5x+1\right)-1\left(5x+1\right)=0\)
\(\left(3x-1\right)\left(5x+1\right)=0\)
\(3x-1=0\) ; \(5x+1=0\)
\(3x=1\) \(5x=-1\)
\(x=\dfrac{1}{3}\) \(x=-\dfrac{1}{5}\)
Vậy: \(x=\dfrac{1}{3};x=-\dfrac{1}{5}\)
`a)` Ta có: `\hat{ABy}+\hat{yBz}+\hat{ABz} = 360^o`
`=>\hat{ABy}+145^o +90^o = 360^o`
`=>\hat{ABy} = 125^o`
`b)` Ta có: `\hat{ABy}=\hat{BAx}`
Mà `2` góc nằm ở vị trí so le trong
`=>Ax //// By`
Vẽ By' là tia đối của tia By
Ta có:
∠zBy + ∠zBy' = 180⁰ (kề bù)
⇒ ∠zBy' = 180⁰ - ∠zBy = 180⁰ - 145⁰ = 35⁰
⇒ ∠ABy' = ∠ABz - ∠zBy' = 90⁰ - 35⁰ = 55⁰
Ta có:
∠ABy + ∠ABy' = 180⁰ (kề bù)
⇒ ∠ABy = 180⁰ - ∠ABy' = 180⁰ - 55⁰ = 125⁰
b) Do ∠BAx = ∠ABy = 125⁰
Và ∠BAx so le trong với ∠ABy
⇒ Ax // By
Ta có:
\(\dfrac{-2}{3}=\dfrac{-40}{60}\)
\(\dfrac{-3}{5}=\dfrac{-36}{60}\)
\(\dfrac{2}{3}=\dfrac{40}{60}\)
\(\dfrac{5}{4}=\dfrac{75}{60}\)
→ \(\dfrac{-40}{60}< \dfrac{-36}{60}< 0< \dfrac{40}{60}< \dfrac{75}{60}\)
Hay : \(\dfrac{-2}{3}< \dfrac{-3}{5}< 0< \dfrac{2}{3}< \dfrac{5}{4}\)
Chúc bạn học tốt
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)