\(\frac{x+2}{x-2}-\frac{x-2}{x+2}:1+\frac{x^2}{8-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{S_{BDM}}{S_{BDC}}=\frac{BM}{BC}=\frac{1}{3}\left(1\right)\)
Ta lại có
\(\hept{\begin{cases}\frac{S_{AIB}}{S_{BIM}}=\frac{AI}{MI}=\frac{1}{2}\\\frac{S_{ADI}}{S_{MDI}}=\frac{AI}{MI}=\frac{1}{2}\end{cases}}\)
\(\Rightarrow S_{BDM}=S_{BIM}+S_{DIM}=2S_{AIB}+2S_{ADI}=2S_{ABD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{2S_{ABD}}{S_{BDC}}=\frac{1}{3}\)
\(\Rightarrow\frac{S_{ABD}}{S_{BDC}}=\frac{1}{6}=\frac{AD}{DC}\)
\(\Rightarrow\frac{AD}{AC}=\frac{1}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H M N I O
a) Áp dụng ĐL đường phân giác trong tam giác, ta có:
\(\frac{AM}{HM}=\frac{AC}{HC}\); \(\frac{BN}{HN}=\frac{AB}{AH}\).
Dễ thấy \(\Delta\)AHB ~ \(\Delta\)CHA (g.g): \(\frac{AC}{AB}=\frac{HC}{AH}\Rightarrow\frac{AC}{HC}=\frac{AB}{AH}\)
Do đó: \(\frac{AM}{HM}=\frac{BN}{HN}\)=> MN // AB (ĐL Thales đảo) (đpcm).
b) Áp dụng hệ quả ĐL Thales: \(\frac{MO}{MI}=\frac{AO}{AN}\)(Do NI//AM); \(\frac{MO}{MB}=\frac{NO}{AN}\)
\(\Rightarrow\frac{MO}{MI}+\frac{MO}{MB}=\frac{AO+NO}{AN}=\frac{AN}{AN}=1\Leftrightarrow\frac{1}{MI}+\frac{1}{MB}=\frac{1}{MO}\)(đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1: Rút gọn
a. (x+y)2 + (x-y)2
=x2+2xy+y2+x2-2xy+y2=2x2+2y2
b. 2.(x-y) . (x+y) + (x+y)2 + (x-y)2
=2.(x2-y2)+2x2+2y2=4x2
c. (x-y+z)2 + (z-y)2 +2.(x-y+z) . (z-y)
=x2+y2+z2-2xy-2yz+2zx+z2-2yz+y2+2.(xz-xy-yz+y2+z2-zy)
=x2+2y2+2z2-2xy+2zx-4yz+2xz-2xy-4yz+2y2+2z2
=x2+4y2+4z2-4xy-8yz+4xz
Câu 2: Chứng minh
(ac+bd)2 + (ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2= a2c2+b2d2+a2d2+b2c2 =(a2+b2) . (c2+d2)
Câu 1:
a. \(\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2\left(x^2+y^2\right)\)
b. \(2\left(x-y\right)\left(x+y\right)+\left(x+y^2\right)+\left(x-y\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=100^2-99^2+98^2-97^2+.......+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+.......+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+.......+\left(2-1\right)\left(2+1\right)\)
\(=1\left(100+99\right)+1\left(98+97\right)+.......+1\left(2+1\right)\)
\(=3+7+.......+195+199\)
Số số hạng là :
199 - 3 : 4 + 1 = 50(số)
Tổng A là :
(199 + 3) x 50 : 2 = 5050
\(B=3\left(2^2+1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1\)
\(=\left(4-1\right)\left(2^2+1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^8+1\right).......\left(2^{64}+1\right)+1\)
\(...........................\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1=2^{128}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét thí nghiệm 1:
\(PTHH:Mg+2HC1->FeCI_2+H_2\) (1)
Giả sử Fe phản ứng hết -> Chất rắn là \(FeCI_2\)
\(\Rightarrow n_{Fc}=n_{FeCI_2}=n_{h_2}=\frac{3,1}{127}\approx0,024\left(mol\right)\)
Xét thí nghiệm 2:
\(PTHH:Mg+2HCI->MgCI_2+H_2\)(2)
\(Fe+2HCI->FeCI_2+H_2\) (3)
Ta thấy :Ngoài a gam Fe như thí nghiệm 1 cộng với b gam Mg mà chỉ giải phóng :
\(n_{H_2}=\frac{0,0448}{22,4}=0,024\left(mol\right)\)
-> Chứng tỏ TH1:Fe dư HCI hết :
Ta có \(n_{HCI}\left(TN1\right)=n_{HCI}\left(TN2\right)=2_{n_{H2}}=2.0,02=0,04\left(mol\right)\)
TH1:
\(n_{Fe\left(pư\right)}=n_{nFeCI_2}=\frac{1}{2}n_{HCI}=\frac{1}{2}.0,04=0,02\left(mol\right)\)
\(\Rightarrow m_{fe\left(dư\right)}=3,1-0,02.127=0,56\left(gam\right)\)
\(m_{Fe\left(dư\right)}=0,02.56=1,12\left(gam\right)\)
\(\Rightarrow m_{Fe}=a=0,56+1,12=1,68\left(gam\right)\)
TN2:
Áp dụng ĐLBTKL :
\(a+b=3,34+0,02.2-0,04.36,5=1,92\left(g\right)\)
Mà \(a=1,68gam->b=1,92-1,68=0,24\left(g\right)\)
P/s:Thằng lười :v
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow x^2+y^2-3xxy=0\)
\(\Rightarrow x^2-2xy+y^2-xy=0\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\Rightarrow x-y=\sqrt{xy}=\sqrt{x}.\sqrt{y}\)
\(\Rightarrow x=\sqrt{x}.\sqrt{y}+y=\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)
\(\Rightarrow y=x-\sqrt{x}.\sqrt{y}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Rightarrow\frac{x}{y}=\frac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}\)