Giải hệ phương trình sau:
a/
\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)
b/
\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có bao nhiêu số chính phương có ba chử số
A 23
B 24
C 25
D 26
các bạn giải chi tiết giùm mình luôn nha!!!
Gọi k là số số chính phương có 3 chữ số => 100 <= k <= 999
<=> 10 <= √k <= 31 ( √k thuộc N )
Vậy có 24 số chính phương có 3 chữ số bắt đầu từ 10^2 tới 31^2
\(sin^6a+cos^6a+3sin^2a.cos^2a=sin^6a+cos^6a+3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=\left(sin^2a+cos^2a\right)^3=1\)
Ta có: \(\left(a-1\right)^3=a^3-3a^2+3a-1\)
\(=a\left(a^2-3a+3\right)-1=a\left(a-\frac{3}{2}\right)^2+\frac{3}{4}a-1\ge\frac{3}{4}a-1\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\left(b-1\right)^3\ge\frac{3}{4}b-1;\left(c-1\right)^3\ge\frac{3}{4}c-1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{3}{4}\left(a+b+c\right)-3=\frac{3}{4}\cdot3-3=-\frac{3}{4}\)
\(\sqrt{833}=7\sqrt{17}\)
Cho \(\sqrt{x}=a\sqrt{17}\)và \(\sqrt{y}=b\sqrt{17}\)với \(a+b=7\)
\(\Rightarrow a=1\)thì \(b=6\)tương tự với các kết quả khác sao cho \(a+b=7\)
\(\Rightarrow\sqrt{x}=1\sqrt{17}=\sqrt{17}\Leftrightarrow x=17\) và \(\sqrt{y}=6\sqrt{17}=\sqrt{17\cdot6^2}=\sqrt{612}\Leftrightarrow y=612\)
Làm tương tự với từng kết quả của a và b
delta = b2 - 4ac = (-(m+2))2 - 4*1*(2m-1) = (m+2)2 - 4( 2m-1 ) = m2 + 4m +4 - 8m + 4 = m2 - 4m + 8 = (m-2)2 + 4
Ta có : \(\hept{\begin{cases}\left(m-2\right)^2>=0\left(voimoim\right)\\4>0\left(lđ\right)\end{cases}}\)
=> ( m-2)2 +4 >0 ( với mọi m )
=> delta > 0 => pt luôn có 2 nghiệm phân biệt
Với n chẵn thì tổng đó thì tổng đó là hợp số vì chia hết cho 2
Vói n lẻ thì n=2k+1, thì ta có:
n4+42k+1=(n2+22k+1)2-n2.22k+2=(n2+22k+1+n.2k+1)(n2+22k+1-n.2k+1)
Chỉ cần chứng minh cả hai cái đó lớn hơn 1 là được
Ta có: \(n^2+2^{2k+1}\ge2.n.2\frac{2k+1}{2}=n.2^{k+1}\)
Vì n lẻ >1nên n2+22k+1-n.2k+1>1
Vậy số đó là hợp số
a/
\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)
(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)
\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)
\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)
\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)
Xin làm ý b
\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = y = 1