2/2x-6=3/5x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}=\widehat{B}=\left(180^o-\widehat{C}\right):2\) (Tổng các góc trong của tam giác bằng 280 độ)
\(\Rightarrow\widehat{A}=\widehat{B}=\left(180^o-40^o\right):2=70^o\)
a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)
\(=\dfrac{11+15}{16}\)
\(=\dfrac{26}{16}\)
\(=\dfrac{13}{8}\)
b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)
\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)
\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)
\(=\dfrac{1+4+40-81}{16}\)
\(=\dfrac{-36}{16}\)
\(=\dfrac{-9}{4}\)
c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=\dfrac{-2}{6}\)
\(=-\dfrac{1}{3}\)
\(2T=2^2+2^3+2^4+...+2^{2009}\)
\(T=2T-T=2^{2009}-2=2\left(2^{2008}-1\right)\)
T= 2+22+23+...+22008
2T=22+23+24+...+22009
2T-T= 22009-2
T= 22009-2 = (22009-2)1
\(4^{11}.25^{11}\le2^n.5^n\le20^{12}.5^{12}\)
\(\Rightarrow\left(2^2\right)^{11}.\left(5^2\right)^{11}\le2^n.5^n\le\left(2^2.5\right)^{12}.5^{12}\)
\(\Rightarrow2^{22}.5^{22}\le2^n.5^n\le2^{24}.5^{24}\)
\(\Rightarrow\left(2.5\right)^{22}\le\left(2.5\right)^n\le\left(2.5\right)^{24}\)
\(\Rightarrow22\le n\le24\Rightarrow n\in\left\{22;23;24\right\}\left(n\in N\right)\)
Ta có 411.2511=(4.25)11=10011=1022
2n.5n=(2.5)n=10n
2012.512=(20.5)12=10012=1024
⇒ 1022≤10n<1024
⇒ 22≤n<24
⇒ nϵ {22;23}
\(m^2-n^2=2m-2n\left(1\right)\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)=2\left(m-n\right)\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)-2\left(m-n\right)=0\)
\(\Rightarrow\left(m-n\right)\left(m+n-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m-n=0\\m+n-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=n\\m+n=2\end{matrix}\right.\)
Vậy (1) đúng khi \(m=n\) hay \(m+n=2\)
3x+25=26x22+2x30
3x+25=26x4+2
3x+25=106
3x=106-25=81
3x=34
⇒ x=4
a) Ta có AD = AB và AE = CD. Vì AD = AB, nên tam giác ABD là tam giác cân tại A. Tương tự, tam giác AEC là tam giác cân tại A. Do đó, ta có ∠ABD = ∠BAD và ∠CAE = ∠EAC. Vì ∠BAD = ∠CAE, nên ∠ABD = ∠EAC. Vì tam giác ABD và tam giác AEC là tam giác cân tại A, nên ta có BD = AB và CE = AE. Do đó, ta có BD = AB = AE = CE. b) Ta có BD = AB và CE = AE. Vì BD = AB và CE = AE, nên ta có BD = CE. Vì BD = CE, nên tam giác BCD là tam giác cân tại B. Vì tam giác BCD là tam giác cân tại B, nên ta có ∠BCD = ∠CBD. Vì ∠BCD = ∠CBD, nên ∠BCD + ∠CBD = 180°. Do đó, ta có ∠BCD + ∠CBD = 180°. Vì ∠BCD + ∠CBD = 180°, nên tam giác BCD là tam giác đều. Vì tam giác BCD là tam giác đều, nên ta có BE = CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Vì M là trung điểm của BE, nên ta có BM = ME. Vì N là trung điểm của CD, nên ta có CN = ND. Vì BM = ME và CN = ND, nên ta có BM + CN = ME + ND. Do đó, ta có BM + CN = ME + ND. Vì BM + CN = ME + ND, nên ta có BN = MD. Vì BN = MD, nên tam giác BMD là tam giác cân tại B. Vì tam giác BMD là tam giác cân tại B, nên ta có ∠BMD = ∠BDM. Vì ∠BMD = ∠BDM, nên ∠BMD + ∠BDM = 180°. Do đó, ta có ∠BMD + ∠BDM = 180°. Vì ∠BMD + ∠BDM = 180°, nên tam giác BMD là tam giác đều. Vì tam giác BMD là tam giác đều, nên ta có BM = MD. Vì BM = MD, nên ta có BM = MD = AM. Vậy ta có AM = AN.
Đính chính lại
\(...2^{1+2+...+x}< 2^{11}\Rightarrow2^{\dfrac{x\left(x+1\right)}{2}}< 2^{11}\Rightarrow\dfrac{x\left(x+1\right)}{2}< 11\)
\(\Rightarrow x\left(x+1\right)< 22\)
Vì \(4.5=20< 22;5.6=30>22\)
\(\Rightarrow x=4\left(x\in N\right)\) lớn nhất thỏa mãn (1)
\(2.2^2.2^3....2^x< 2^{11}\left(1\right)\)
\(\Rightarrow2^{1+2+...+x}< 2^{11}\)
\(\Rightarrow2^{x\left(x+1\right)}< 2^{11}\)
\(\Rightarrow x\left(x+1\right)< 11\)
vì \(2.\left(2+1\right)=6< 11;3.\left(3+1\right)=12>11\)
\(\Rightarrow x=2\left(x\in N\right)\) lớn nhất thỏa mãn (1)
X=12,5
Chắc chắn 100% nha:3