Cho đường tròn tâm O. ĐƯờng kính AB. C là điểm chính giữa cung AB. Điểm M di động trên cung nhỏ AC(M khác A,C). Dựng hình vuông AMNP, N nằm trên đoạn thẳng MB. Chứng minh:
1 Gọi Q là giao điểm của tia MP với (O), chứng minh Q đối xứng với C qua AB.
2 Gọi I là tâm đường tròn nội tiếp tam giác AMB, chứng minh tứ giác AINB nội tiếp.
3 Khi M chạy trên cung nhỏ AC thì P chạy trên đường nào?
4 Gọi K là giao điểm của NP và BQ. Chứng mình rằng KA là tiếp tuyến của (O).
O B A C M N P Q I K
a) Do AMNP là hình vuông nên \(\widehat{QMB}=45^o\)
Lại có do C là điểm chính giữa của nửa đường tròn nên \(\widebat{CB}=90^o\Rightarrow\widehat{CMB}=45^o\)
(Góc nội tiếp)
Vậy thì \(\widehat{CMQ}=\widehat{CMB}+\widehat{BMQ}=45^o+45^o=90^o\)
Vậy CQ là đường kính hay C và Q đối xứng nhau qua O.
b) Ta thấyAMNP là hình vuông. MI là phân giác góc \(\widehat{AMB}\) nên \(\Delta MAI=\Delta MNI\left(c-g-c\right)\Rightarrow\widehat{MAI}=\widehat{MNI}\)
Lại có \(\widehat{MAI}=\widehat{IAM}\) nên \(\widehat{MNI}=\widehat{IAM}\)
Xét tứ giác AINB có \(\widehat{MNI}=\widehat{IAM}\) nên AINB là tứ giác nội tiếp (góc ngoài tại đỉnh bằng góc đối diện)