Cho hai hàm số bậc nhất y = 2x + 3k và y = ( 2m +1 )x + 2k -3 . Tìm điều kiện của m và k để đồ thị của hai hàm số là :
a/ Hai đường thẳng cắt nhau
b/ hai đường thẳng song song với nhau
c/ hai đường thẳng trùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn áp dụng cái này là được: \(a^3-a⋮3\)\(\forall a\in Z\)
\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)
Điều kiện: \(x,y\ge0\)
Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ
Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)
Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)
\(\Leftrightarrow x=y\)
Thế vô (1) ta được:
\(2x^{2017}=1\)
\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)
Ta có:\(n=4x^2y^2-7x+7y=\left(2xy-1\right)^2+4xy-7x+7y-1>\left(2xy-1\right)^2\)
\(n=\left(2xy+1\right)^2-4xy+7y-7x-1< \left(2xy+1\right)^2\)
\(\Rightarrow\left(2xy-1\right)^2< n< \left(2xy+1\right)^2,\)mà \(n\)là số chính phương nên ta có:
\(n=\left(2xy\right)^2\Leftrightarrow4x^2y^2-7x+7y=4x^2y^2\Leftrightarrow x=y\left(đpcm\right)\)
\(P=\frac{a}{2\left(b+c\right)-a}+\frac{b}{2\left(c+a\right)-b}+\frac{c}{2\left(a+b\right)-c}\)
\(=\frac{a^2}{2\left(ab+ca\right)-a^2}+\frac{b^2}{2\left(bc+ab\right)-b^2}+\frac{c^2}{2\left(ca+bc\right)-c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2-\frac{\left(a+b+c\right)^2}{3}}=1\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)......................................................
Câu a)
Em mới hc lớp 7 nên chỉ chứng minh cái phần dấu bằng xảy ra khi nào thui. Ko biết có đúng ko
Theo đề bài Ta có
\(\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(ac+bd\right)^2=\left(a^2+b^2\right)^2=\left(c^2+d^2\right)^2\)
Suy ra \(ac=a^2,bd=b^2,ac=b^2\)
Suy ra \(a=b=c=d\)
Vậy dấu bằng xảy ra khi \(a=b=c=d\)
(1;1)
(1;1)