cho a,b,c>0,abc>=1.CMR:
\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+a^2+c^2}+\frac{1}{c^5+a^2+b^2}< =\frac{3}{a^2+b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Tự CM: 1.2007<2.2006<...<1004.1004(cái này lớp 5 nhé)
SUy ra \(\sqrt{1.2007}< \sqrt{2.2006}< ...< \sqrt{1004.1004}=1004\)
Có: \(S=2\left(\sqrt{1.2007}+\sqrt{3.2005}+...+\sqrt{1003.1005}\right)\)
\(S< 2\left(\sqrt{1004.1004}+\sqrt{1004.1004}+...+\sqrt{1004.1004}\right)\)
\(S< 2.\left(1004+1004+...+1004\right)=2.502.1004=1004.1004=1004^2\)
Suy ra đpcm. BẤM ĐÚNG CHO T NHÉ
Ta có: \(a^2-\frac{1}{a^2}=a+\frac{1}{a}\)\(\Leftrightarrow\left(a-\frac{1}{a}\right)\left(a+\frac{1}{a}\right)=a+\frac{1}{a}\)\(\Leftrightarrow a-\frac{1}{a}=\frac{\left(a+\frac{1}{a}\right)}{\left(a+\frac{1}{a}\right)}=1\)
\(a^2+\frac{1}{a^2}=\left(a-\frac{1}{a}\right)^2+2.a.\frac{1}{a}=1^2+2=3\)
\(a^2-\frac{1}{a^2}=a+\frac{1}{a}\Leftrightarrow\left(a+\frac{1}{a}\right)\left(a-\frac{1}{a}\right)=\left(a+\frac{1}{a}\right)\Leftrightarrow\orbr{\begin{cases}\left(a-\frac{1}{a}\right)=1\\\left(a+\frac{1}{a}\right)=0\end{cases}}\)
\(\Rightarrow\left(a-\frac{1}{a}\right)^2=a^2-2+\frac{1}{a^2}=1\Leftrightarrow a^2+\frac{1}{a^2}=2+1=3\)
Thiếu đề !
Chuyển biểu thức , ta có :
x2 - 8xy + 20y2 - 4y + 1
= x2 - 8xy + 16y2 + 4y2 - 4y + 1
= (x2 - 8xy + 16y2) + (4y2 - 4y + 1)
= (x - 4y)2 + (2y + 1)2
Còn lại do thiếu đề nên không thể làm tiếp
\(P=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{\sqrt{5}-\sqrt{1}}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+...+\frac{\sqrt{2005}-\sqrt{2001}}{4}\)
\(=\frac{\sqrt{2005}-\sqrt{1}}{4}=\frac{\sqrt{2005}-1}{4}\)
xời làm hoài Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath