Cho tam giác ABC có BC=4a.; CA=4a;AB=3a. Đường trung trực của đoạn AC cắt đường phân giác trong của góc BAC tại K. CM trung điểm của đoạn AK là tâm đường tròn nội tiếp tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\ge b\ge c\ge1\) ta có bổ đề
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Lợi dụng cái trên ta được
\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\)
\(\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)
PS: Đề sai nên t sửa luôn đề rồi nhé
\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)
Bài này mk hơi làm tắt nha
Đặt \(A=\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x+5\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
Nhân chéo ta được:
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x=26\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\left(koTM\right)\\x=-13\left(TM\right)\end{cases}}\)
Vậy nghiệm PT thỏa mãn là -13
Vì cứ 2 số tự nhiên thì tổng của chúng bằng -2x
Vậy dãy số trên có số số hạng là:
( 2015 - 1 ) : 2 + 1 = 1008 ( số hạng )
Dãy trên có số cặp là:
1008 : 2 = 504 ( cặp )
Do đó dãy trên có 504 số -2x
Ta được:\(x-3x+5x-7x+9x-11x+...+2013x-2015x=3024\)
\(\Leftrightarrow\left(-2x\right)+\left(-2x\right)+\left(-2x\right)+....+\left(-2x\right)=3024\)
Mà dãy này có 504 số -2x
\(\Leftrightarrow504.\left(-2x\right)=3024\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\)
Vậy x=-3
Gọi \(c=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\) (có vô số dấu \(\sqrt{ }\))
\(\Rightarrow c^2=6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}=6+c\)
\(\Leftrightarrow c^2-c-6=0\)
\(\Leftrightarrow\left(c-3\right)\left(c+2\right)=0\)
\(\Leftrightarrow c=3\)
Vậy \(a< c=b\)
phản đối online math