Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng 2017- p2 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=8>0\) nên phương trình luôn có 2 nghiệm.
Theo viet: x1 + x2 = 2; x1*x2 = -1
Phương trình cần tìm có 2 nghiệm là -x1 và -x2
S= - x1 - x2 = -(x1 + x2) = -2
P= (-x1)*(-x2) = x1*x2 = -1
Vậy phương trình cần tìm là: X2 - SX + P = X2 + 2X - 1
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}-1}-\frac{2}{x-1}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2}{x-1}\)
\(=\frac{x+\sqrt{x}+\sqrt{2}}{x-1}+\frac{2}{x-1}\)
\(=\frac{x+\sqrt{x}+\sqrt{2}-2}{x-1}\)
1: Xét tứ giác APMQ có góc APM+góc AQM=180 độ
nên APMQ là tứ giác nội tiếp(1)
Xét tứ giác AHMP có góc AHM+góc APM=180 độ
nên AHMP là tứ giác nội tiếp(2)
Từ (1), (2) suy ra A,P,M,Q,H cùng thuộc 1 đường tròn
2:
Sửa đề: OH vuông góc với PQ
Xét (O) có
góc PAQ là góc nội tiếp chắn cung PQ
nên góc PAQ=1/2*góc POQ
=>góc POQ=120 độ
=>góc POH=góc QOH=60 độ
=>ΔPOH đều, ΔHOQ đều
=>OH là phân giác
=>OH vuông góc với PQ
=>OP=OH=PH=OQ=QH
=>OPHQ là hình thoi
Có \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{1}+\left(\sqrt{1}\right)^2}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{3}\)
\(=\sqrt{3}-\sqrt{1}-\sqrt{3}\)
\(=-\sqrt{1}=-1\)
Năm nay mình cũng vừa lên lớp 9 đó.
\(\left(x-\sqrt{11}\right)^2=0\)
\(\left(x-\sqrt{11}\right)=0\)
\(x=\sqrt{11}\)
\(\left(x-\sqrt{11}^2=0\right)\)
\(\left(x-\sqrt{11}\right)=0\)
\(x=\sqrt{11}\)
Chắc là gpt \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(t=x^2+3x\) thì ta có:
\(\Leftrightarrow t\left(t+2\right)-24=0\)\(\Leftrightarrow t^2+2t-24=0\)
\(\Leftrightarrow\left(t-4\right)\left(t+6\right)=0\)\(\Rightarrow\orbr{\begin{cases}t=4\\t=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+3x=4\\x^2+3x=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Vì p nguyên tố > 3
=> p \(̸⋮\)3
=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 \(⋮3\)
Tương tự như trên, ta có:
p nguyên tố > 3
=> p lẻ và p không chia hết cho 8
=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 \(⋮\)8
Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24
câu 2 chuyên HN 2017-2018