K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath

14 tháng 2 2019

\(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0.\)

tương tự chứng minh x^2+x+1>0

\(-2\left(x^2+2x+1\right)\le0\Rightarrow-\frac{2\left(x^2+2x+1\right)}{x^2+x+1}\le0\)

\(\Rightarrow\frac{-2x^2-4x-x}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1-3x^2-3x-3}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1}{x^2+x+1}-3\le0\Rightarrow D\le3.\)

\(2\left(x^2-2x+1\right)\le0;3\left(x^2+x+1\right)>0\)

\(\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}\ge0\Rightarrow\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{3\left(x^2-x+1\right)-x^2-x-1}{3\left(x^2+x+1\right)}=d-\frac{1}{3\Rightarrow}d\ge\frac{1}{3}\)

=> GTNN, GTLN

14 tháng 2 2019

Dự đoán điểm rơi x = 1;y = 2 và làm thôi:3

Ta có: \(G=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)

\(\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=\left(x+\frac{1}{x}\right)+\left(6y+\frac{24}{y}\right)+x+2y-9\)

\(\ge2\sqrt{x.\frac{1}{x}}+2\sqrt{6y.\frac{24}{y}}+x+2y\ge2+24+5-9=22\)

Dấu "=" xảy ra khi x = 1;y=2

Vậy \(G_{min}=22\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

13 tháng 2 2019

20(x-2/x+1)^2-5(x+2/x-1)+48(x-2)(x+2)/)(x-1)(x+1)

Đặt x-2/x+1 là a

x+2/x-1 là b

=> Ta có PT: 20a^2-5b+48ab

=20a^2+50ab-2ab-5b

=20a(a+2,5)-2b(a+2,5)

=(20a-2b)(a+2,5)

Xong thay gt a và b vào mà tự tìm.

13 tháng 2 2019

 Phân tích 5=1.5
nếu n^5+5n^3+4n muốn chja hết cho 5thì phải chja hết cho lân lượt 8,5,3 
ta chứng minh như sau: 
n^5-5n^3+4n= 
(n-2)(n-1)n(n+1)(n+2) 
chja hết cho 8 vì tích 2 số chẵn liên tiếp chia het cho 8, gjả sử n lẻ=>(n-1)(n+1) chja het 8, nếu n chẵn =>n(n+1) chja het 8, 
.cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5, 
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3. 
Từ chứng mjh trên suy ra dfcm cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5, 
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3. 
Từ chứng mjh trên suy ra dfcm

13 tháng 2 2019

bạn ơi +5^3 chứ không phải -5^3