K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Ta có: (1-x)(1-y)>= ( 1- \sqrt{xy})^2 
Q <= ((x+y)^2(1-x-y))/(x+y)(1-\sqrt{xy})^2 <= (x+y)(1-(x+y))/4(1-(x+y)/2)^2 <= (1-(x+y)/2)^2/8(1-(x+y)/2)^2 =1/8
Dấu = x=y=1/3 
 

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

15 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}\)

Tương tự rồi cộng lại ta có:

\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)\)

\(\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}\)

\(=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Đẳng thức xảy ra khi \(x=y=z=1\)

4 tháng 10 2019

Áp dụng BĐT AM-GM ta có:

\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}3yz​≤3y+z+1​⇒3yz​x​≥3y+z+1​x​=y+z+13x​

Tương tự rồi cộng lại ta có:

VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)VT≥3(y+z+1x​+x+z+1y​+x+y+1z​)

=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=3(xy+yz+xx2​+xy+yz+yy2​+yz+xz+zz2​)

\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}≥2(xy+yz+xz)+x+y+z3(x4+y4+z4)​≥x2+y2+z2(x2+y2+z2)2​

=x^2+y^2+z^2\ge xy+yz+xz=VP=x2+y2+z2≥xy+yz+xz=VP

Đẳng thức xảy ra khi x=y=z=1x=y=z=1

15 tháng 6 2017

KHÔNG MẤT TÍNH TÔNG QUÁT, ĐẶT \(a< _=b< _=c\)

TA CÓ:

\(a^2+b^2+c^2+abc=0\)

=> \(a^2+b^2+c^2=-abc\)

DO \(a< _=b< _=c\)

=> \(a^2+b^2+c^2=-abc>_=a^2+a^2+a^2=3a^2\)

=> \(-bc>_=3a\)

XÉT HAI TRƯỜNG HỢP:

TH1: a khác 0

=> \(\frac{-bc}{a}>_=3\)

TA CÓ \(a^2+b^2+c^2=-abc\)

\(a^2+b^2+c^2>0\left(a#0\right)\)

=> - abc > 0

=> Hoặc a âm , b và c lớn hơn 0 , hoặc a , b , c âm

=> \(\frac{-bc}{a}< 0\)

MÀ \(\frac{-bc}{a}>_=3\)

=> LOẠI 

TH2: a = 0

=> thỏa mãn

=> \(b^2+c^2+bc=0\)

=> \(b^2+c^2+\left(b+c\right)^2=0\)

=> b = c = 0

VẬY a = b = c = 0

16 tháng 6 2017

Sai rồi b. Làm lại đi b

15 tháng 6 2017

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

15 tháng 6 2017

\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)

\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)

Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.

\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)

\(\Leftrightarrow x=2y-1\)

Thế lại phương trình ban đầu ta được.

\(\Rightarrow y=3\)

\(\Rightarrow x=5\)

Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\) 

11x5 −√2x+1=3y−√4y−1+2

⇔√4y−1−√2x+1=3y+2−11x5 

Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và {

4y−1
2x+1

là 2 số hữu tỷ nên.

⇒√4y−1−√2x+1=0

⇔x=2y−1

Thế lại phương trình ban đầu ta được.

⇒y=3

⇒x=5

Vậy nghiệm cần tìm là {

x=5
y=3