K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Ta có : \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)

=> (a + 3)(b - 4) = (a - 3)(b + 4)

=> ab - 4a + 3b - 12 = ab + 4a - 3b - 12

=> 8a = 6b 

=> 4a = 3b

=> \(\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\end{cases}}\)

Khi đó D = \(\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}=\frac{3^3.k^3+3^3}{4^3.k^3+4^3}=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)

27 tháng 2 2020

a, xét tam giác OCA và tam giác ODB có: góc O chung

OB = OA (Gt)

góc OBD = góc OAC = 90 

=> tam giác OCA = tam giác ODB (cgv-gnk)

=> OC = OD (Đn)

=> tam giác OCD cân tại O (đn)

+ OC = OD (cmt)

OA = OB (gt)

OA + AD = OD

OB + BC = OC 

=> BC = AD 

xét tam giác BIC và tam giác AID có : 

góc BCI = góc IDA do tam giác OCA  = tam giác ODB (cmt)

góc CBI = góc DAI = 90

=> tam giác BIC = tma giác AID (cgv-gnk)

=> IC = ID (đn)

=> tam giác ICD cân tại I (đn)

b. xét tam giác ODC có : 

CA _|_ OD 

DB _|_ OC 

BD cắt CA tại I

=> OI _|_ DC (đl)