Cho \(\Delta ABC\left(AC>AB\right)\). Trên \(AC\)lấy \(M\)sao cho \(CM=AB\). Gọi \(N,I\) lần lượt là trung điểm của \(BC,AM\). \(NI\)cắt \(AB\)tại \(H\). Chứng minh \(AH=AI\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài nhiều quá... nhìn mik nổi gai ốc lun...oh my god sao mà nhiều vậy nè .
Mik định giải giúp bạn nhưng bây h mik hoảng quá ... nhiều vậy chắc mik chết mất... ToT ... >.< =)))
\(3x^n\left(6x^{n-3}+1\right)-2n^x\left(9x^{n-3}-1\right)=\) \(18x^{2n-3}+3x^n-\)
ở chỗ -2nx(9xn-3-1) đề đúng ko vậy?
a) \(2x^2-7xy+5y^2=2x^2-2xy-5xy+5y^2=2x\left(x-y\right)-5y\left(x-y\right)=\left(x-y\right)\left(2x-5y\right)\)
b) \(5x^3+10x^2y+5xy^2=5x\left(x^2+2xy+y^2\right)=5x\left(x+y\right)^2\)
c) \(x^2-2xy+y^2-9=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
d) \(x\left(x-2\right)+x-2=\left(x-2\right)\left(x+1\right)\)
e) \(5x\left(x-3\right)-x+3=\left(x-3\right)\left(5x-1\right)\)
a) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
b) \(49\left(y-4\right)^2-9y^2-36y-36\)
\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)
\(=\left[7\left(y-4\right)-\left(3y+6\right)\right]\left[7\left(y-4\right)+\left(3y+6\right)\right]\)
\(=\left(4y-34\right)\left(10y-22\right)=4\left(2y-17\right)\left(5y-11\right)\)
\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left[\left(x^2-x+2\right)+\left(x-2\right)\right].\left[\left(x^2-x+2\right)-\left(x-2\right)\right]\)
\(=\left(x^2-x+2+x-2\right).\left(x^2-x+2-x+2\right)\)
Ta có BT =\(x^4-2x^3+6x^2-8x+8=x^4+4x^2-2x^3-8x+2x^2+8=x^2\left(x^2+4\right)-2x\left(x^2+4\right)+2\left(x^2+4\right)\)
=\(\left(x^2+4\right)\left(x^2-2x+2\right)\)
BÀI 1:
a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)
\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)
c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)
e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)
f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)
g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
h) ktra lại đề
m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)
A B C M N H I K
Qua B kẻ đường thẳng song song với NI, cắt tia CA tại điểm K.
Xét \(\Delta\)BCK có: N là trung điểm BC, NI // BK; I thuộc CK => I là trung điểm của CK
=> IK=IC => IA + AK = IM + CM. Mà IA=IM nên AK=CM.
Ta có: AK=CM; CM=AB => AK=AB => \(\Delta\)BAK cân tại A => ^ABK=^AKB
Lại có: IH // BK (NI // BK) => ^AKB=^AIH; ^ABK=^AHI (So le trong)
Mà ^ABK=^AKB (cmt) => ^AIH=^AHI => \(\Delta\)HAI cân tại A => AH=AI (đpcm).