K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

quá chuẩn luôn !!!!!!!!

NHỚ L.I.K.E cho mk nha

26 tháng 10 2017

 a) (x+2)(x^2-2x+4)-x(x^2+2)=15 
<=> x^3 + 8 - x^3 - 2x = 15 
<=> -2x = 7 
<=> x = -7/2 

b) (x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28 
<=> x^3 + 9x² + 27x + 27 - x(9x² + 6x + 1) + 8x^3 + 1 = 28 
<=> x^3 + 9x² + 27x + 27 - 9x^3 - 6x² - x + 8x^3 + 1 - 28 = 0 
<=> 3x² + 26x = 0 
<=> x(3x + 26) = 0 
Vậy x = 0 và x = -26/3 

c) (x^2-1)^3-(x^4+x^2+1)(x^2-1)=0 
<=> (x² - 1)[(x² -1)² - x^4 - x² - 1] = 0 
<=> (x-1)(x+1)(x^4 - 2x² + 1 - x^4 - x² - 1 ) = 0 
<=> -(x-1)(x+1)3x² = 0 
Vậy nghiệm là x = 1 ; -1 ; 0

22 tháng 12 2017

mai cũng thi r và chưa mò đc đáp án :)) :v :v

26 tháng 10 2017

a) \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

                                        \(=a^2+2ab+b^2\)

                                         \(=\left(a+b\right)^2\)   (ĐFCM)

b) Áp dụng câu a, ta có:

    \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4.20=1\)

Vì a < b suy ra \(a-b=-1\)

Khi đó: \(\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)

25 tháng 10 2017

\(\left(6x^3-7x^2-x+2\right):\left(2x+1\right).\)

\(=\left(x+\frac{1}{2}\right).\left(x-1\right).\left(x-\frac{2}{3}\right):\left(x+\frac{1}{2}\right)\)

\(=\left(x-1\right).\left(x-\frac{2}{3}\right)\)

25 tháng 10 2017

tui co bay max 5 nè

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.

23 tháng 10 2017

Nếu ol thì tham khảo nah nguoiemtinhthong.

1.1

2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1

⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)

Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0

pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0

a=2ba=2b v a=13ba=13b

Các bạn tự giải quyết tiếp nhé.

1.2

TXĐ D=[1;+∞)D=[1;+∞)

đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0

pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0

⇔a=b⇔a=b v a=23ba=23b

...

1.3

D=[3;+∞)D=[3;+∞)

Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0

pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2

⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0

⇒a=5b⇒a=5b
...

1.4

ĐK

⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)

⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)

Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)

⇔2a2+2b2=3ab

1.5

Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)

⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x

⇔t2−t−4x2+2x=0t2−t−4x2+2x=0

Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2

⇒t=1−2xt=1−2x hoặc t=2xt=2x

23 tháng 10 2017

1.1

2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1

2(.2+x+1)+3(x-1)

3a+b=11a2-19b2

tóm tắt

22 tháng 10 2017

n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)

Để biểu thức là số nguyên tố thì nó chỉ chia hết cho 1 và chính nó 

Tức là chỉ chia hết cho n-1 hoặc (n2−3n+1)(n2−3n+1) hoặc(n−1)(n2−3n+1)(n−1)(n2−3n+1)

Suy ra: n - 1 = 1 hoặc n2−3n+1=1n2−3n+1=1
=> n=2 hoặc n=0 hoặc n = 3

Trong 3 kết quả ta chỉ nhận n =3. Khi đó biểu thức có giá trị là 2 (số nguyên tố)

Đáp số n = 3

9 tháng 11 2017

a) 85+211

=(23)5+211=215+211

=211(24+1)

=211.17 (chia hết cho 17 )            

Vậy 85+211 chia hết cho 17

b)Ta có a^n + b^n

=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ 
19^19 + 69^19

= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44

22 tháng 10 2017

khó thế

22 tháng 10 2017

Lê văn hải có oline thì tham khảo nha .

x^10 + x^5 + 1 
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1 
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1) 
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1) 
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1

21 tháng 10 2017

câu này lên google

21 tháng 10 2017

\(x^{64}+x^{32}+1\)

\(=\left(x^{32}\right)^2+2x^{32}+1+x^{32}-2x^{32}\)

\(=\left(x^{32}+1\right)^2-x^{32}\)

\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)

\(=\left(x^{32}+1-x^{16}\right).\left(x^{32}+1+x^{16}\right)\)

21 tháng 10 2017

a, ( x-y)2=4

21 tháng 10 2017

3x^2 +3y^2 -6xy -12

=3(x^2 - 2xy +y^2 - 2^2  )

=3 (x-y)^2 - 2^2 

=3(x-y-2)(x-y+2)

3(x+y) -(x^2+2xy+y^2)

=3(x+y) -(x+y)^2 

(x+y)(3-x-y)