K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Kẻ AH vuông góc vs BC

=> dt tam giác ABC la: (AH.BC)/2

=>để dt tam giác ABC lớn nhất thi AH lớn nhất

Có AH nhỏ hơn hoặc = AB(định lý đương vuông góc, đương xiên)

vậy AH lớn nhất khi AH=AB=2cm

dt lớn nhất của tam giác ABC la :(AH.BC)/2=(AB.BC)/2=(2*5)/2=5

12 tháng 2 2019

Cho O2 , CO2 tác dụng với Ca(OH)2
O2 không phản ứng với Ca(OH)2
CO2 phản ứng với Ca(OH)2 tạo ra CaCO3 và nước H2O
Phương trình phản ứng:
  Ca(OH)2 + CO2 → CaCO3↓ + H2O

12 tháng 2 2019

Còn không khí thì sao bạn

12 tháng 2 2019

ko tuyển ny luôn đi? -.-

12 tháng 2 2019

12 + 2 + 2019

= 14 + 2019

= 2033

17 + 9 + 2019

= 26 + 2019

= 2045

12 tháng 2 2019

\(\frac{2a+1}{a^2\left(a+1\right)^2}=\frac{1}{a^2}-\frac{1}{\left(a+1\right)^2}\)

15 tháng 4 2020

giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:

x,y,z>0 và 4x+3y+4z=22

ta thấy với a=x; b=y; c=z thì 

\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)

do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức

\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)

\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)

và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được

\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)

\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)

vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22

muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là

\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)

vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)

giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:

\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)

\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)

đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3

Sorry, em mới học lớp 7 thôi😅

12 tháng 2 2019

Thay x=-1 vào (*), ta được:

\(-m^2+4=2m+4\)

\(\Leftrightarrow-m^2-2m=4-4\)

\(\Leftrightarrow-m\left(m+2\right)=0\)

\(\Leftrightarrow-m=0\)hoặc \(m+2=0\)

\(\Leftrightarrow m=0\)hoặc \(m=-2\)

Vậy khi m = 0, m = -2 thì (*) có nghiệm duy nhất là x = -1