Tính nhanh nếu có thể:
c) 5.32 + 24:23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tổng của hai số nguyên tố là 601 nên trong hai số có một số chẵn và một số lẻ
Số nguyên tố chẵn là 2
Số nguyên tố còn lại là:
601 - 2 = 599
Gọi 2 số nguyên tô đó lần lượt là `a;b`
Ta có: Tích `2` số nguyên tố là `ab`
Do `a vdots a; b vdots b => ab vdots a` và `b`
Mà `ab vdots 1` và `ab`
`=> ab` có nhiều hơn `2` ước (đpcm)
\(2022^0+\left[100-\left(3^2+1\right)^2\right]\)
\(=1+100-10^2\)
=1
\(\left|x-y+1\right|>=0\forall x,y\)
=>\(-2\left|x-y+1\right|< =0\forall x,y\)
\(\left|y-2\right|>=0\forall y\)
=>\(-3\left|y-2\right|< =0\forall y\)
Do đó: \(-2\left|x-y+1\right|-3\left|y-2\right|< =0\forall x,y\)
=>\(C=-2\left|x-y+1\right|-3\left|y-2\right|-4< =-4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
\(6^x+6^{x+1}=2^{x+1}+2\cdot2^{x+2}+4\cdot2^x\)
=>\(6^x+6^x\cdot6=2^x\cdot2+4\cdot2^x+4\cdot2^x\)
=>\(6^x\cdot7=2^x\cdot10\)
=>\(3^x=\dfrac{10}{7}\)
=>\(x=log_3\left(\dfrac{10}{7}\right)\)
6\(x\) + 6\(x+1\) = 2\(x+1\) + 2.2\(x+2\) + 4.2\(^x\) (\(x\in\) N)
6\(^x\)(1 + 6) = 2\(^x\).(2 + 2.22 + 4)
6\(^x\).7 = 2\(^x\).(2+ 8 + 4)
6\(x\).7 = 2\(^x\).(10 + 4)
6\(^x\).7 = 2\(^x\).14
6\(^x\) = 2\(^x\).14 : 7
6\(^x\) = 2\(x\).2
6\(^x\) : 2\(^x\) = 2
3\(^x\) = 2 ⇒ 3\(^x\) ⋮ 2 (vô lý) Vậy pt vô nghiệm hay
\(x\in\) \(\varnothing\)
\(7-\left(x-1\right)=15+3\left(x+1\right)\\ 7-x+1=15+3x+3\\ 8-x=18+3x\\ 3x+x=8-18\\ 4x=-10\\ x=-\dfrac{10}{4}\\ x=\dfrac{-5}{2}\)
Vậy: ...
\(A=\left\{n^2\text{ }|\text{ }n\in N,\text{ }1\le n\le7\text{ }\right\}\)
Hoặc:
\(A=\left\{x\text{ }|\text{ }\text{x là số chính phương},\text{ }0< x< 50\right\}\)
\(c,5.3^2+24:2^3\)
\(=5.9+24:8\)
\(=45+3\)
\(=48\)
\(5\cdot3^2+24:2^3\)
\(=5\cdot9+24:8\)
=45+3=48