K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

chứng minh phương trình trên bằng \(\sqrt{2}\)

23 tháng 6 2017

\(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{2\sqrt{2}+\sqrt{6}}{2+1+\sqrt{3}}+\frac{2\sqrt{2}-\sqrt{6}}{2+1-\sqrt{3}}\)

\(=\frac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}+\frac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}\)

\(=\frac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-3\sqrt{2}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-3\sqrt{2}}{6}\)

\(=\frac{6\sqrt{2}}{6}=\sqrt{2}\)

23 tháng 6 2017

denta , =(m -1) -(m +1 )

=\(m^2-2m+1-m-1=m^2-3m\)

phương trình có hai nghiệm phân biệt 

\(\Leftrightarrow denta>0.\)

\(\Leftrightarrow m^2-3m>0\)

\(\Leftrightarrow m\left(m-3\right)>0\)

\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)

23 tháng 6 2017

m > - 1/3

23 tháng 6 2017

đáng lẽ đề bài phải là AHcắt CB tại ii ms đúng bạn 

a, AI vg vs BC vì tính chất 3 đường cao 

25 tháng 6 2017

Vẽ thêm đường thẳng AN vuông góc với AM và cắt CD ở N. Chứng minh được: \(\Delta AND=\Delta AMB\left(c-g-c\right)\Rightarrow AM=AN\)(cạnh tương ứng)

Tiếp tục áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ANI .......... => ĐPCM