cho tg ABC vẽ hai đường trung trực AH;BK cắt nhau ở M suy ra so sánh MB;MA;MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số bé nhất chia hết cho 2,3,5,9 là 90
Thì số cùng chia hết cho 2,3,5,9 thì chia hết cho 90
Thế nên số y là số tròn chục vì nó chia hết cho 90 vì 90 là số tròn chục
Các số tròn chục giữa 440 và 490 là 450, 460, 470, 480
Mà chỉ có số 450 chia hết cho 90
Nên y là 450
Ta có \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\)
= \(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\dfrac{1}{3}-\dfrac{1}{60}=\dfrac{19}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Vậy M < \(\dfrac{2}{3}\)
Vận tốc của ô tô là:
45 \(\times\) 2 = 90 (km/h)
Hai xe gặp nhau sau:
280 : ( 45 + 90) = \(\dfrac{56}{27}\) (giờ)
Đáp số: \(\dfrac{56}{27}\) giờ
Chiều cao của tam giác ABC là:
22,4 \(\times\) 2 : 3,5 = 12,8 (cm)
Diện tích tam giác ABC là:
15,5 \(\times\) 12,8 : 2 = 99,2 (cm2)
Đáp số: 99,2 cm2
chiều cao hình tam giác ABC là :
22,4x2:3,5 =12,8 (cm)
diên tích hình tam giác ABC là :
12,8x15,5=19,84 (cm2)
đáp số:19,84cm2
Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).
Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có
\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)
\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\)
\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\).
ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm
Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)
Ta chứng minh (1) đúng
Áp dụng bất đẳng thức Schwarz :
\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm)