A=a(a+1)(a+2)(a+3)chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEF có
AH là đường cao
AH là đường phân giác
Do đó: ΔAEF cân tại A
Xét ΔAEF có BM//EF
nên \(\dfrac{AB}{AE}=\dfrac{AM}{AF}\)
mà AE=AF
nên AB=AM
=>ΔABM cân tại A
b: Kẻ BK//AC(K\(\in\)EF)
Xét tứ giác BMFK có
BM//FK
BK//MF
DO đó: BMFK là hình bình hành
=>BK=MF
Xét ΔBDK và ΔCDF có
\(\widehat{BDK}=\widehat{CDF}\)(hai góc đối đỉnh)
DB=DC
\(\widehat{DBK}=\widehat{DCF}\)(BK//CF)
Do đó: ΔBDK=ΔCDF
=>BK=CF
Ta có: BK//FC
=>\(\widehat{BKE}=\widehat{AFE}\)
=>\(\widehat{BKE}=\widehat{BEK}\)
=>BE=BK
mà BK=FC và BK=MF
nên MF=BE=CF
Ta có pt: $2x-y=3$ (1)
+, $y=0\Rightarrow 2x=3\Leftrightarrow x=1,5$
$\Rightarrow (1,5;0)$ là giao điểm của pt (1) với trục hoành
+, $x=0\Rightarrow -y=3\Leftrightarrow y=-3$
$\Rightarrow (0;-3)$ là giao điểm của pt (1) với trục tung
Kẻ đường thẳng đi qua hai điểm trên, ta được đường thẳng biểu diễn các nghiệm của pt $2x-y=3$
$\Rightarrow$ Chọn đáp án:
Diện tích xung quanh là:
(12+5)x2x2,75=5,5x17=93,5(m2)
Diện tích cần lát gạch là:
93,5+12x5=153,5(m2)
Diện tích 1 viên gạch là:
25x20=500(cm2)=0,05(m2)
Số viên gạch cần dùng là:
153,5:0,05=3070(viên)
Mình thấy có 1 số ô giống HCN, không biết là bạn vẽ lệch hay đó là HCN ạ?
Giá bán của 1 cốc trong 5 cốc đầu tiên là:
30000x(1-20%)=24000(đồng)
Giá bán của 1 cốc trong 15 cốc tiếp theo là:
24000x(1-5%)=24000x0,95=22800(đồng)
Tổng số tiền phải trả là:
24000x5+22800x15=462000(đồng)
2:
\(\text{Δ}=\left[-\left(2m-1\right)\right]^2-4\cdot1\cdot\left(m^2-m-2\right)\)
\(=4m^2-4m+1-4m^2+4m+8=9>0\)
=>Phương trình luôn có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{2m-1-\sqrt{9}}{2}=\dfrac{2m-1-3}{2}=m-2\\x=\dfrac{2m-1+3}{2}=\dfrac{2m+2}{2}=m+1\end{matrix}\right.\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-1\\x_1x_2=\dfrac{c}{a}=m^2-m-2\end{matrix}\right.\)
\(\dfrac{x_1^4+x_1^3+m^2-m-2}{x_1}-\dfrac{x_2^4+x_2^3+m^2-m-2}{x_2}=-7m^2+4m+24\)
=>\(x_1^3+x_1^2+\dfrac{x_1x_2}{x_1}-x_2^3-x_2^2-\dfrac{x_1x_2}{x_2}=-7m^2+4m+24\)
=>\(\left(x_1^3-x_2^3\right)+\left(x_1^2-x_2^2\right)+\left(x_2-x_1\right)=-7m^2+4m+24\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+\left(x_1-x_2\right)\left(x_1+x_2\right)-\left(x_1-x_2\right)=-7m^2+4m+24\)
=>)\(\left(x_1-x_2\right)\left(x_1^2+x_2x_1+x_2^2+x_1+x_2-1\right)=-7m^2+4m+24\)(1)
TH1: \(x_1=m-2;x_2=m+1\)
(1) sẽ tương đương với:
\(\left(m-2-m-1\right)\left[\left(m-2\right)^2+\left(m-2\right)\left(m+1\right)+\left(m+1\right)^2+m-2+m+1-1\right]=-7m^2+4m+24\)
=>\(-3\left[m^2-4m+4+m^2-m-2+m^2+2m+1+2m-2\right]=-7m^2+4m+24\)
=>\(-3\left(3m^2-m+1\right)+7m^2-4m-24=0\)
=>\(-9m^2+3m-3+7m^2-4m-24=0\)
=>\(-2m^2-m-27=0\)
=>\(m\in\varnothing\)
TH2: \(x_1=m+1;x_2=m-2\)
(1) sẽ trở thành:
\(\left(m+1-m+2\right)\left[\left(m+1\right)^2+\left(m+1\right)\left(m-2\right)+\left(m-2\right)^2+2m-1-1\right]=-7m^2+4m+24\)
=>\(3\left(m^2+2m+1+m^2-m-2+m^2-4m+4+2m-2\right)=-7m^2+4m+24\)
=>\(3\left(3m^2-m+1\right)+7m^2-4m-24=0\)
=>\(9m^2-3m+3+7m^2-4m-24=0\)
=>\(16m^2-7m-21=0\)
=>\(m=\dfrac{7\pm\sqrt{1393}}{32}\)
Vì a;a+1;a+2;a+3 là bốn số nguyên liên tiếp
nên \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮4!\)
=>\(A⋮4\)