K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

1/

a,\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{5}{-2}=\frac{-5}{2}\)

b, \(x^2+y^2=\left(x+y\right)^2-2xy=5^2-2.\left(-2\right)=25+4=29\)

c,\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.\left(-2\right).5=125+30=155\)

d,thiếu dữ kiện

2.

Ta có: a chia 7 dư 3 => a=7k+3 (k thuộc N)

=>\(a^2=\left(7k+3\right)\left(7k+3\right)=7k\left(7k+3\right)+3\left(7k+3\right)=7k\left(7k+3\right)+3.7k+3.3=7k\left(7k+3\right)+3.7k+7+2\)chia 7 dư 2

Vậy...

6 tháng 7 2018

M nhanh thật đấy hương

6 tháng 7 2018

\(a,\left(x+7\right)\left(3x-1\right)=x^2-49\)

\(\left(x+7\right)\left(3x-1\right)-\left(x+7\right)\left(x-7\right)=0\)

\(\left(x+7\right)\left(3x-1-x+7\right)=0\)

\(\left(x+7\right)\left(2x+6\right)=0\)

\(\hept{\begin{cases}x+7=0\\2x+6=0\end{cases}}\)

\(\hept{\begin{cases}x=-7\\x=-3\end{cases}}\)

\(b,5\left(x-3\right)-4=2\left(x-1\right)+7\)

\(5x-15-4=2x-2+7\)

\(5x-19=2x+5\)

\(3x=24\)

\(x=8\)

6 tháng 7 2018

\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(x^3-27+5x-x^3=6x\)

\(5x-6x=27\)

\(-x=27\)

\(x=-27\)

19 tháng 4 2019

Hai địa điểm A và B cách nhau 700m. Xe 1 khởi hành từ A chuyển động thẳng đều đến B với vận tốc v1. Xe 2 khởi hành từ B cùng lúc với xe 1, chuyển động thẳng đều với vận tốc v2. Cho biết: -Khi xe 2 chuyển động trên đường AB về phía A, hai xe gặp nhau khi chuyển động đc 50s. -Khi xe 2 chuyển động trên đường AB ra xa A, hai xe gặp nhau khi chuyển động đc 350s. 1/ Tìm v1, v2 2/ Nếu xe 2 chuyển động trên đường vuông góc với AB thì bao lâu sau khi chuyển động, khoảng cách giữa hai xe là ngắn nhất. Khoảng cách này là bao nhiêu?

6 tháng 7 2018

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

6 tháng 7 2018

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)

6 tháng 7 2018

Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)

\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)

                    \(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

                      \(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)  (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)

\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)

Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)

                                                \(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)

Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)

Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

                     \(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)

Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z

P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý

6 tháng 7 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\\ \)

\(=\frac{3x^2-4x+1}{2x^2+x-3}=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)+\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+1\right)}=\frac{3x-1}{2x+1}\)

6 tháng 7 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)

\(=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}\)

\(=\frac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{\left(3x^2-4x+1\right)\left(x-1\right)}{\left(2x^2+x-3\right)\left(x-1\right)}\)

\(=\frac{3x^2-4x+1}{2x^2+x-3}\)

\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)

\(=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)-\left(3x-3\right)}\)

\(=\frac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{3x-1}{2x-3}\)

6 tháng 7 2018

\(\frac{a^3-125}{3a^2+15a+75}\)

\(=\frac{\left(a-5\right)\left(a^2+5a+25\right)}{3\left(a^2+5a+25\right)}\)

\(=\frac{a-5}{3}\)

Ủng hộ nhé~~~~!!! :3

6 tháng 7 2018

\(\frac{a^3-125}{3a^2+15a+75}=\frac{\left(a-5\right).\left(a^2+5a+25\right)}{3.\left(a^2+5a+25\right)}=\frac{a-5}{3}\\ \)