Tìm GTLN của biểu thức B = x2+17/x2+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
(Hình bạn tự vẽ nhé ^^)
Ta có \(\widehat{xOy}+\widehat{yOx}+\widehat{zOt}+\widehat{xOz}=360^o\)
\(\Rightarrow\widehat{xOy}+90^o+\widehat{zOt}+90^o=360^o\)
\(\Rightarrow\widehat{xOy}+\widehat{zOt}=180^o\left(đpcm\right)\)
Ta có xOy + zOt = ( xOz + yOz)+(yOt+yOz)
=> 90 + yOz + 90 + yOz
Mà yOz = yOz
=> xOy + zOt = 90 + 90
=> XOy + zOt = 180 độ(dpcm)
a) |7x - 6| = 8
<=> 7x - 6 = 8 hoặc 7x - 6 = -8
7x = 8 + 6 7x - 6 = -8
7x = 14 7x = -8 + 6
x = 14 : 7 7x = -2
x = 2 7x = -2 : 7
x = -2/7
=> x = 2 hoặc x = -2/7
\(b,\frac{2}{5}+\frac{3}{7}:x=-9\)
\(\Leftrightarrow\frac{3}{7}:x=-9-\frac{2}{5}\)
\(\Leftrightarrow\frac{3}{7}:x=-\frac{47}{5}\)
\(\Leftrightarrow x=\frac{3}{7}:\left[-\frac{47}{5}\right]=\frac{3}{7}\cdot\frac{-5}{47}=-\frac{15}{329}\)
\(\frac{3x+5}{2}+\frac{3x+5}{4}+\frac{3x+5}{6}=\frac{3x+5}{8}\)
\(\frac{3x+5}{2}+\frac{3x+5}{4}+\frac{3x+5}{6}-\frac{3x+5}{8}=0\)
\(\left(3x-5\right)\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}-\frac{1}{8}\right)=0\)
\(\Rightarrow x=-\frac{5}{3}\)
a) 4x + 1/3 = 3/4
=> 4x = 3/4 - 1/3
=> 4x = 5/12
=> x = 5/12 : 4
=> x = 5/48
b) 1/3 - 2/5 + 3x = 3/4
=> -1/15 + 3x = 3/4
=> 3x = 3/4 + 1/15
=> 3x = 49/60
=> x = 49/ 60 : 3
=> x = 49/180
c) 3(1/2 - x) + 1/3 = 7/6 - x
=> 3/2 - 3x + 1/3 = 7/6 - x
=> 11/6 - 3x = 7/6 - x
=> 11/6 - 7/6 = -x + 3x
=> 2/3 = 2x
=> x = 2/3 : 2
=> x = 1/3
a) \(4x+\frac{1}{3}=\frac{3}{4}\)
\(4x=\frac{3}{4}-\frac{1}{3}\)
\(4x=\frac{9}{12}-\frac{4}{12}\)
\(4x=\frac{5}{12}\)
\(x=\frac{5}{12}:\frac{4}{1}=\frac{5}{12}.\frac{1}{4}\)
\(x=\frac{5}{48}\)
Xin lỗi bn nhé nhưng mik chỉ làm được câu ,b thui
a/ ΔMABΔMAB và ΔMCDΔMCD có:
MB = MD (gt)
AMBˆ=CMDˆAMB^=CMD^ (đối đỉnh)
MA = MC (M là trung điểm của AC)
=> ΔMABΔMAB = ΔMCDΔMCD (c. g. c) (đpcm)
b/ ΔKMDΔKMD và ΔHMBΔHMB có:
KM = HM (gt)
KMDˆ=BMHˆKMD^=BMH^ (đối đỉnh)
MD = MB (gt)
=> ΔKMDΔKMD = ΔHMBΔHMB (c. g. c)
=> KDMˆ=HBMˆKDM^=HBM^ (hai góc tương ứng bằng nhau ở vị trí so le trong) =>
Hình dễ tự vẽ nhé ! T ngu vẽ hình trên OLM lắm :v
a ) Xét \(\Delta MAB\)và \(\Delta MCD\) có :
AM = CM ( do M là trung điểm của AC )
\(\widehat{AMB}=\widehat{CMD}\) ( hai góc đối đỉnh )
MD = MB ( gt )
nên \(\Delta MAB=\Delta MCD\left(c.g.c\right)\)
b ) Xét \(\Delta BMH\)và \(\Delta DMK\)có :
MD = MB ( gt )
\(\widehat{BMH}=\widehat{DMK}\)( Hai góc đối đỉnh )
MK = MH ( gt )
nên \(\Delta BMH=\Delta DMK\)( c.g.c )
c ) A,K,D là 3 điểm thẳng hàng ( đề ko yêu cầu CM :v )
\(\left(2^3\right)^{222}=6^{222}\)
\(\left(3^2\right)^{148}=6^{148}\)
\(\Rightarrow a>b\)
\(2^{225}=2^{3.75}=8^{75}\)
\(3^{150}=3^{2.75}=9^{75}\)
Vì 9>8 suy ra \(9^{75}>8^{75}\)Do đó: \(3^{150}>2^{225}\)
Số phần tương tứng với giá tiền mỗi quyển tập là 7 phần
Số phần tương ứng với giá tiền 5 quyển tập là 5x7=35 phần
số phần tương ứng với giá tiền mỗi quyển tập là 3 phần
Số phần tương ứng với giá tiền 10 cây viết là 10x3=30 phần
Tổng số phần là:
35+30 =65 ( phần)
Mỗi phần tương ứng với số tiền là:
65000:65=1000( đồng)
Mỗi quyển tập có giá tiền là:
7x1000=7000( đồng)
Mỗi cây viết tương ứng với giá tiền là:
3x1000=3000( đồng)
đáp sô:...
∆ABC cân tại A, AM là đường trung tuyến ứng với cạnh đáy BC nên AM cũng là đường trung trực của BC.
D là giao điểm của các đường trung trực AC và BC nên D thuộc trung trực của AB.
Vậy DA = DB (tính chất đường trung trực).
A D B M C
2 1 1 1 2 I F A D E C M B
a) Ta có: Đường trung trực của đoạn thẳng AC cắt cắt BC tại F
=> F thuộc đường trung trực của đoạn thẳng AC
=> FA=FC
=> Tam giác ACF cân tại F
Xét tam giác AFC có: FE và AM là hai đường cao cắt nhau tại I
=> I là trực tâm của tam giác AFC
=> CI vuông góc AF
b) Ta có: Tam giác FAC cân tại F
=> \(\widehat{A_1}=\widehat{C_1}\)
Tam giác ABC cân tại A
=> \(\widehat{B_1}=\widehat{C_1}\)
=> \(\widehat{A_1}=\widehat{B_1}\)(1)
Mà \(\widehat{A_1}+\widehat{A_2}=180^o\)( kề bù) (2)
và \(\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù) (3)
Từ (1), (2), (3) => \(\widehat{A_2}=\widehat{B_2}\)
Xét tam giác ABF và tam giác CAD
có: AB=AC ( tam giác ABC cân)
\(\widehat{A_2}=\widehat{B_2}\)( chứng minh trên)
BF=AD ( giả thiết)
=> Tam giác ABF = tam giác CAD
=> \(\widehat{D}=\widehat{F}\)
=> Tam giác CFD cân tại D
c) CD vuông CF
=> Tam giác CFD vuông cân
=> \(\widehat{AFC}=\widehat{DFC}=45^o\)
Xét tam giác AFC cân tại F
=> \(\widehat{C_1}+\widehat{A_1}+\widehat{AFC}=180^o\Rightarrow\widehat{C_1}=\widehat{A_1}=\frac{180^o-45}{2}=67,5^o\)
Xét tam giác ABC cân tại A
=> \(\widehat{C_1}=\widehat{B_1}=67,5^o\)
=> \(\widehat{A}=45^o\)
Điều kiện của tam giác ABC là cân tại A và góc A bằng 45 độ
\(B=\frac{x^2+17}{x^2+7}=\frac{x^2+7}{x^2+7}+\frac{10}{x^2+7}=1+\frac{10}{x^2+7}\)
để B đạt gtln thì 1/x^2 + 7 lớn nhất
=> x^2 + 7 nhỏ nhất
mà x^2 + 7 > 7
=> x^2 + 7 = 7
=> x^2 = 0
=> x = 0
tự thay vào tìm gtln
Ta thấy x^2 >= 0 => x^2 + 17 >= 17 ; x^2 + 7 >= 7
=> x^2 + 17/x^2 + 7 >= 17/7
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
Vậy với x = 0 ta có GTNN của B là 17/7
Bạn sửa lại đề thành Tìm GTNN nhé