BIẾT \(\tan\alpha=2\) TÍNH GIÁ TRỊ BIỂU THỨC A: \(=\sin^2\alpha\)\(+2\sin\alpha\cos\alpha\)\(-3\cos^2\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a^3}{b}+ab\ge2a^2\)
do đó VT +(ab + bc + ca) \(\ge2a^2+2b^2+2c^2\)
hay VT \(\ge2a^2+2b^2+2c^2-\left(ab+bc+ca\right)\ge a^2+b^2+c^2\) (đpcm).
Đề viết mệt quá nên thay \(\sqrt{a}=a;\sqrt{b}=b;\sqrt{c}=c\) viết lại đề tiện thể sửa đề luôn.
\(a^2+b^2=\left(a+b-c\right)^2\)
Chứng minh:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Ta có: \(a^2+b^2=\left(a+b-c\right)^2\)
\(\Leftrightarrow c^2-2ac-2bc+2ab=0\)
\(\Leftrightarrow a=\frac{c^2-2bc}{2c-2b}\)
Thế vô bài toán ta được
\(VT=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(c^2\right)^2}{b^2+\left(b-c\right)^2}=\frac{2c^2\left(2b^2+c^2-2bc\right)}{\left(2b^2+c^2-2bc\right)4\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
Ta lại có:
\(VP=\frac{\frac{c^2-2bc}{2c-2b}-c}{b-c}=\frac{-c^2}{-2\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
\(\Rightarrow\)ĐOCM