Cho \(\left(m+n+q\right)^2=m^2+n^2+q^2\) (m,n,q khác 0)c/m\(\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{q^2}=\frac{3}{mnq}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x^2+x+1+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1+2x^2-2x=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=-1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=-1\)
Vậy .................
ĐKXĐ : \(x\ne1\)
Ta có : \(\frac{1}{x-1}+\frac{2x}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x\left(x-1\right)}{x^3-1}=\frac{3x^2}{x^3-1}\)
=>\(x^2+x+1+2x^2-2x=3x^2\)
\(\Rightarrow3x^2+1-x=3x^2\)
\(\Rightarrow1-x=0\)
<=> x=1 ( không thỏa mãn Đkxđ)
Vậy x=\(\varnothing\)
a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2\)
Vậy A < 20002
c) \(E=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(F=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì 50 < 52 => 2.50 < 2.52
=> E < F
\(263^2+74.263+37^2=263^2+2.37.263+37^2=\left(263+37\right)^2=300^2=90000\)
Áp dụng hằng đẳng thức thức 1: (a+b)2=a2+2ab+b2
\(\left(m+n+q\right)^2=m^2+n^2+q^2\)
<=>\(m^2+n^2+q^2+2\left(mn+nq+qm\right)=m^2+n^2+q^2\)
<=>\(mn+nq+qm=0\)
<=>\(\frac{mn+nq+qm}{mnq}=0\)
<=>\(\frac{mn}{mnq}+\frac{nq}{mnq}+\frac{qm}{mnq}=0\)
<=>\(\frac{1}{q}+\frac{1}{m}+\frac{1}{n}=0\)
<=>\(\frac{1}{m}+\frac{1}{n}=-\frac{1}{q}\)
<=>\(\left(\frac{1}{m}+\frac{1}{n}\right)^3=\left(-\frac{1}{q}\right)^3\)
<=>\(\frac{1}{m^3}+\frac{3}{mn}\left(\frac{1}{m}+\frac{1}{n}\right)+\frac{1}{n^3}=-\frac{1}{q^3}\)
<=>\(\frac{1}{m^3}+\frac{1}{n^3}+\frac{1}{q^3}=-\frac{3}{mn}\cdot\left(-\frac{1}{q}\right)=\frac{3}{mnq}\) (đpcm)