a,Vẽ trên cùng hệ Oxy các đồ thị hàm số y=x(d1),y=2x(d2),y=-x+3(d3) b,đường thẳng(d3)giao(d1),(d2)={A,B}.Tìm tọa độ A và B,tính iện tích tam giác OAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(x-\sqrt{x}+1=\left(x-1\right)^2+\sqrt{x}\)
mà \(\left(\sqrt{x}-1\right)^2>=0>-1\Leftrightarrow\sqrt{x}-1< \sqrt{x}+\left(\sqrt{x}-1\right)^2\)-1)^2
hay\(\sqrt{x}-1< x-\sqrt{x}+1\)
vậy đpcm
tui làm bên học24 r` mà, muốn đưa link mà lỗi, thôi làm lại :(
\(pt\Leftrightarrow x^9-12x^6+48x^3-64=\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+8\sqrt[3]{\left(x^2+4\right)^2}+16\)
\(\Leftrightarrow x^9-12x^6+48x^3-128=\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2-16+8\sqrt[3]{\left(x^2+4\right)^2}-32\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)=\frac{\left(x^2+4\right)^4-4096}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x^2+4\right)^2-32768}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x-2\right)\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\frac{\left(x-2\right)\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x-2\right)\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\frac{\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\right]=0\)
Dễ thấy: pt trong ngoặc vuông vô nghiệm
\(\Rightarrow x-2=0\Rightarrow x=2\)