\(\dfrac{2}{3}\) + \(\dfrac{-1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3}{\left(x-3\right)^2+5}\)
Vì (\(x\) - 3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 5 ≥ 5 ∀ \(x\)
3 > 0; (\(x\) - 3)2 + 5 ≥ 5
⇒ A = \(\dfrac{3}{\left(x-3\right)^2+5}\) ≤ \(\dfrac{3}{5}\)
Vậy Amax = \(\dfrac{3}{5}\) xảy ra khi (\(x\) - 3)2 = 0 ⇒ \(x\) = 3
Kết luận giá trị lớn nhất của A là \(\dfrac{3}{5}\); Xảy ra khi \(x\) = 3
\(-\dfrac{7}{12}< \dfrac{x}{40}< -\dfrac{8}{15}\)
\(\Leftrightarrow-\dfrac{70}{120}< \dfrac{3x}{120}< -\dfrac{64}{120}\)
\(\Leftrightarrow-70< 3x< -64\\ \Leftrightarrow-\dfrac{70}{3}< x< -\dfrac{64}{3}\\ \Leftrightarrow x=-22\)
Vậy \(x=-22\)
\(\dfrac{1}{n\left(n+1\right)}=\dfrac{1+n-n}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\)Đáp án: \(\dfrac{2013.2014.2015}{3}\)
Tổng quát: \(S_n=1.2+2.3+...\left(n-1\right).n\)
Ta sẽ chứng minh \(S_n=\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\) với mọi n nguyên, \(n\ge2\) bằng quy nạp.
- Với \(n=2:S_2=1.2=2=\dfrac{1.2.3}{3}\)
- Giả sử khẳng định đúng đến \(n=k:S_k=\dfrac{\left(k-1\right)k\left(k+1\right)}{3}\)
- Với \(n=k+1:\)
\(S_{k+1}=1.2+2.3+...+\left(k-1\right).k+k.\left(k+1\right)\\ =S_k+k.\left(k+1\right)\\ =\dfrac{\left(k-1\right).k.\left(k+1\right)}{3}+k.\left(k+1\right)\\ =\dfrac{\left(k-1\right).k.\left(k+1\right)+3.k.\left(k+1\right)}{3}\\ =\dfrac{k.\left(k+1\right).\left(k+2\right)}{3}\left(\text{dpcm}\right)\)
Vậy \(D=S_{2014}=\dfrac{2013.2014.2015}{3}\)
\(\dfrac{-4}{9}+\dfrac{-5}{9}=\dfrac{-4+\left(-5\right)}{9}=\dfrac{-9}{9}=-1\)
6\(\dfrac{ }{ }\)5