Cho các số dương thỏa mãn a+b+c=abc. Tìm giá trị lớn nhất của biểu thức:
S=\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}\)+\(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\)+\(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé
a) Do ABCD là hình vuông nên \(\widehat{BEN}=45^o\), vậy thì \(\widehat{BEN}=\widehat{BAN}\) hay ABEN là tứ giác nội tiếp.
Tương tự với tứ giác ADFN.
b) Do ABEN là tứ giác nội tiếp nên \(\widehat{ANE}=180^o-\widehat{ABE}=90^o\) hay \(EN⊥AF\)
Tương tự \(FM⊥AE\)
Xét tam giác AEF có AH, FM, EN là ba đường cao nên chúng đồng quy.
c) Dễ thấy tứ giác EMNF nội tiếp nên \(\widehat{MNE}=\widehat{MFE}\)( Hai góc nội tiếp cùng chắn một cung)
Mà tứ giác ABEN nội tiếp nên \(\widehat{MNE}=\widehat{BAE}\)( Hai góc nội tiếp cùng chắn một cung)
và \(\widehat{MFE}=\widehat{EAH}\) ( Cùng phụ góc AEF)
Vậy nên \(\widehat{BAE}=\widehat{EAH}\)
Suy ra \(\Delta ABE=\Delta AHE\) (Cạnh huyền góc nhọn) hay AH = AB không đổi.
Lại có AH vuông góc EF tại H nên EF luôn tiếp xúc với đường tròn tâm A, bán kinh AB.
Ta có định lý sau:
Hệ \(\hept{\begin{cases}a_1x+b_1y=c_1\\a_2x+b_2y=c_2\end{cases}}\)
- Có 1 nghiệm duy nhất khi \(\frac{a_1}{a_2}\ne\frac{b_1}{b_2}\)
- Có vô số nghiệm khi \(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\)
Do đó \(\hept{\begin{cases}2x+y=5\\mx-y=-7\end{cases}}\) có 1 nghiệm duy nhất \(\Leftrightarrow\) \(\frac{2}{m}\ne\frac{1}{-1}\) \(\Leftrightarrow\) \(m\ne-2\)
Hệ pt ko thể có vô số nghiệm vì \(\frac{1}{-1}\ne\frac{5}{-7}\)
Để phương trình có 2 nghiệm \(x_1,x_2\)thì \(\Delta=4\left(m^2+2m+1\right)-4\left(2m+3\right)>0\Leftrightarrow4m^2-8>0\)
\(\Leftrightarrow m^2>2\Leftrightarrow\orbr{\begin{cases}m< -\sqrt{2}\\m>\sqrt{2}\end{cases}}\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2.\left(m+1\right)\\x_1.x_2=2m+3\end{cases}}\)
Từ \(\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2-2x_1x_2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow4\left(m+1\right)^2-4\left(2m+3\right)=4\Leftrightarrow4m^2+8m+4-8m-12-4=0\)
\(\Leftrightarrow m^2=3\Leftrightarrow\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)
Kết hợp ĐK ta thấy \(\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)thỏa mãn yêu cầu bài toán
Điều kiện có nghĩa
a/ \(\hept{\begin{cases}x+2\ge0\\x-5\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ne5\end{cases}}\)
b/ \(\hept{\begin{cases}2x-1\ge0\\x+3\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne-3\end{cases}}\)
c/ \(\left(x-3\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge3\end{cases}}\)
d/ \(\hept{\begin{cases}2x-1\ge0\\-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le0\end{cases}}\)
Không tồn tại x để nó có nghĩa.
e/ \(\hept{\begin{cases}-3x\ge0\\x+2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le0\\x>-2\end{cases}}\)
Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)
\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)
\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)
\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)
Nhầm dấu = xảy ra khi \(a=b=c=\sqrt{3}\) chứ.