K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

9 tháng 7 2018

\(a)\) \(E=\frac{2016^3-1}{2016^2+2017}\)

\(E=\frac{\left(2016-1\right)\left(2016^2+2016.1+1^2\right)}{2016^2+2017}\)

\(E=\frac{2015\left(2016^2+2017\right)}{2016^2+2017}\)

\(E=2015\)

Chúc bạn học tốt ~ 

9 tháng 7 2018

Các bạn tập trung vào câu a cho mình nhé!

9 tháng 7 2018

\(=a^3+3a\left(b+c\right)\left(a+b+c\right)+\left(b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(b+c\right)\left(a^2+ab+ac\right)+b^3+3bc\left(b+c\right)+c^3-b^3-c^3\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

9 tháng 7 2018

\(Q=x^2-y^2-2y-1\)

\(\Rightarrow Q=x^2-\left(y^2+2y+1\right)\)

\(\Rightarrow Q=x^2-\left(y+1\right)^2\)

\(\Rightarrow Q=\left(x-y-1\right)\left(x+y+1\right)\)

Thay \(x=93;y=6\)vào \(Q\)ta được : 

\(Q=\left(93-6-1\right)\left(93+6+1\right)\)

\(\Rightarrow Q=86.100\)

\(\Rightarrow Q=8600\)

Vậy \(Q=8600\)

9 tháng 7 2018

P/s : Theo mình thì đây là cách nhanh nhất >: 

9 tháng 7 2018

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^2\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)\)

\(=\left(x-z\right)\left(x-y\right)\left(-3y+3z\right)\)

\(=-3\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Ta có

(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]

=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2

=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)

6 tháng 8 2018

xàm quá bạn ơi

9 tháng 7 2018

\(\Leftrightarrow5x-15=2x-2+77\)

\(\Leftrightarrow3x=90\)

\(\Leftrightarrow x=30\)

TK nha!

9 tháng 7 2018

\(5\left(x-3\right)-4=2\left(x-1\right)+77\)

\(\Leftrightarrow5x-15-4-2x+2-77=0\)

\(\Leftrightarrow\left(5x-2x\right)-\left(15+4-2+77\right)=0\)

\(\Leftrightarrow3x-94=0\)

\(\Leftrightarrow3x=94\)

\(\Leftrightarrow x=31,3\left(3\right)\)

10 tháng 7 2018

a)  Dư của f(x ) chia cho  x+2 là f(-2)

Áp dụng định lý Bơ-zu ta có :

\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)

\(=-8+12+a\)

\(=4+a\)

\(\Leftrightarrow a=-4\)

Vậy để f(x) chia hết cho x+2 => a= -4

b) Dư của f(x ) chia cho x-1 là f(1)

Áp dụng định lí Bơ-zu ta có :

\(f\left(1\right)=1^2-3.1+a\)

\(=1-3+a\)

\(=-2+a\)

\(\Rightarrow a=2\)

Vậy ..............

c)  

Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp

d)  Theo định lí Bơ-zu ta có :

\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)

\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)

\(=-a+b-1\)

Mà theo đề bài cho dư = 7

\(\Rightarrow-a+b-1=7\) 

\(\Rightarrow-a+b=8\) (1)

Tương tự :

\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)

\(f\left(1\right)=1^3+a.1+b\)

\(=a+b+1\)

Theo đề bài cho dư 7

\(\Rightarrow a+b+1=7\)

\(\Rightarrow a+b=6\)(2)

Từ (1) và (2)              ( cộng vế với vế)

\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)

\(\Rightarrow2b=14\)

\(\Rightarrow b=7\)

\(\Leftrightarrow a+7=6\)

\(\Rightarrow a=-1\)

Vậy \(f\left(x\right)=x^3-x+7\)

9 tháng 7 2018

\(a)\) \(\left(x-y\right)^3\left(y-z\right)^3\left(z-x\right)^3\)

\(=\)\(\left[\left(x-y\right)\left(y-z\right)\left(z-x\right)\right]^3\)

\(b)\) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)

\(=\)\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Chúc bạn học tốt ~ 

5 tháng 9 2018

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)