Tìm các giá trị nguyên của x,y thỏa mãn phương trình:\(\sqrt{x}\) +\(\sqrt{y}\)=\(\sqrt{1998}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đùa tí :v, Ta có:
\(tanA+tanB+tanC=tanAtanBtanC\)
Vi` vay \(cotAcotB+cotBcotC+cotCcotA=1\)
Va` \(\left(cotA-cotB\right)^2+\left(cotB-cotC\right)^2+\left(cotC-cotA\right)^2\ge0\)
Vi` vay \(cot^2A+cot^2B+cot^2C\ge1\)
Then \(\left(cotA+cotB+cotC\right)^2=cot^2A+cot^2B+cot^2C+2\left(cotAcotB+cotBcotC+cotCcotA\right)\ge3\)
Nen \(cotA+cotB+cotC\ge\sqrt{3}\)
Xay ra khi \(cotA=cotB=cotC\)
\(cotx\) là hàm lồi trên \(\left(0;\frac{\pi}{2}\right)\) và \(A,B,C\in\left(0;\frac{\pi}{2}\right)\)
Thì theo BĐT Jensen ta có:
\(cotA+cotB+cotC\ge3cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)
Xong :v
B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)
\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)
\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)
\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))
chỉ có 1 câu vì UCLN của số câu hỏi của 3 bạn là 26,23,18 là bằng 1 nên trả lời cùng đúng 1 câu
9,9999999999999999999999999999999999999....................
tk nha ><
Tìm số dư trong phép chia : 109 345:14
109345=1093.115=(102Q(14))115
nên 109345=1(mod14)
\(\sqrt{x}+\sqrt{y}=3\sqrt{222}\)
\(3\sqrt{222}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{222}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in Z\)
\(\Rightarrow\) \(a+b=3\)
Xét 4 TH:
- Nếu a = 0 thì b = 3
- Nếu a = 1 thì b = 2
- Nếu a = 2 thì b = 1
- Nếu a = 3 thì b = 0
Từ đó dễ dàng tìm được x, y
:)) Giải thích kiểu này .
bài 2đ
BGK chỉ chấm 1 đ thôi!!!^^
:)) Mình đã từng làm như vậy cô giáo cho mình như vậy.