K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Làm tạm vào đây vậy

từ gt dễ dàng => \(ab+bc+ca\le3\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng cô si ta có

\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Tương tự như vậy rồi ccộng vào nhá nhok

14 tháng 12 2017

ABCMDEIK

Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

13 tháng 12 2017

Ta có  \(2\left(a^2+1\right)\ge\left(a+1\right)^2\)

           \(2\left(b^2+1\right)\ge\left(b+1\right)^2\)

          \(\left(a^2+1\right)\left(b^2+1\right)=a^2b^2+a^2+b^2+1\)

                                                \(=\left(ab+1\right)^2+\left(a-b\right)^2\)

                                                 \(\ge\left(ab+1\right)^2\)

\(\Rightarrow4\left(a^2+1\right)^2\left(b^2+1\right)^2\ge\left(a+1\right)^2\left(b+1\right)^2\left(ab+1\right)^2\)

\(\Rightarrow2\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+1\right)\left(b+1\right)\left(ab+1\right)\)

để \(2\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+1\right)\left(b+1\right)\left(ab+1\right)\)

\(\Rightarrow a=1;b=1\)

15 tháng 12 2017

đoạn thứ ba không dùng bunhia cho nhanh

13 tháng 12 2017

\(áp\)\(dụng\)\(BĐT\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(ta\)\(có\)\(\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge\frac{4a^2}{b^2+c^2}\)

\(\Rightarrow P\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}\)

          \(=\frac{3a^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}\)

            \(\ge\frac{3a^2}{b^2+c^2}+2\ge3+2=5\)        

dấu = xảy ra khi \(a^2=2b^22c^2\)

13 tháng 12 2017

Những bài ntn chúng ta nên nhẩm ngiệm để cô si

ta có A=\(\frac{a^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{4b^2}+\frac{b^2}{a^2}+\frac{a^2}{4c^2}+\frac{c^2}{a^2}+\frac{3}{4}\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\)

Áp dụng bđt cô si cho cặp sô thứ 1, cho cặp số thứ 2

Ta có\(\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge\frac{4a^2}{b^2+c^2}=4\Rightarrow\frac{3}{4}\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\ge3\)

+ hết vào ...=> A>=...

dấu = xáy ra <=> b=c=a=1/căn(2)

13 tháng 12 2017

<=>0,5x(x-3)-(x-3)(2,5x-4)=0

<=>(x-3)(0,5x-2,5x+4)=0

<=>(x-3)(-2x+4)=0

<=>(x-3)*2(4-x)=0

<=>x-3=0 hoặc 4-x=0

<=>x=3 hoặc x=4

12 tháng 12 2017

ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)

Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)

MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)

=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3

dấu = xảy ra <=> x=y=z

12 tháng 12 2017

Giả sử \(0< a\le c\)suy ra \(a^2\le c^2\)

Ta có: \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\)

\(\Rightarrow b^2>4a^2\)

\(\Rightarrow b>2a^{\left(1\right)}\)

Lại có: \(c^2\ge a^2\)

\(\Rightarrow b^2+c^2\ge a^2+b^2>5c^2\)

\(\Rightarrow b^2>4c^2\)

\(\Rightarrow b>2c^{\left(2\right)}\)

Cộng (1), (2) 

\(\Rightarrow2b>2a+2c\)

\(\Rightarrow b>a+c\)(vô lí)

\(\Rightarrow c< a\)

CMTT suy ra \(c< b\)

Vậy \(a>c;b>c\)

11 tháng 12 2017

1, a=ƯCLN(128;48;192)

2, b= ƯCLN(300;276;252)

3, Gọi n.k+11=311  => n.k = 300

         n.x + 13 = 289  => n.x = 276

=> \(n\inƯC\left(300;276\right)\)

4, G/s (2n+1;6n+5) = d  (d tự nhiên)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow6n+5-\left(6n+3\right)⋮d}\)

\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì 2n+1 lẻ => 2n+1 không chia hết cho 2

=> d khác 2 => d=1 => đpcm

11 tháng 12 2017

5, a,

Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1 

=> a+b = a1.6+b1.6 = 6(a1+b1) = 72

=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)

Vì (a1,b1) = 1

=> a1+b1 = 1+11=5+7

* Với a1+b1 = 1+11

+) TH1: a1 = 1; b1=11 => a =6 và b = 66

+) TH2: a1=11; b1=1 => a=66 và b = 6

* Với a1+b= 5+7

+)TH1: a1=5 ; b1=7 => a=30 và b=42

+)TH2: a1=7;b1=5 => a=42 và b=30

Vậy.......

11 tháng 12 2017

x2 - x + 1

= x2 - 2.x.\(\frac{1}{2}\)\(\frac{1}{4}\)\(\frac{3}{4}\)

= ( x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\ge\)\(\frac{3}{4}\)( vì (x - 1/2)2 \(\ge\)0 )