K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Áp dụng bđt \(\frac{a}{b+c+d}\le\frac{1}{9}\left(\frac{a}{b}+\frac{a}{c}+\frac{a}{d}\right)\) ta có :

\(\frac{xy}{2x+y}\le\frac{1}{9}\left(\frac{xy}{x}+\frac{xy}{x}+\frac{xy}{y}\right)=\frac{1}{9}\left(2y+x\right)\)

\(\frac{3yz}{2y+z}\le3.\frac{1}{9}\left(\frac{yz}{y}+\frac{yz}{y}+\frac{yz}{z}\right)=\frac{1}{3}\left(2z+y\right)\)

\(\frac{6xz}{2z+x}\le6.\frac{1}{9}\left(\frac{xz}{z}+\frac{xz}{z}+\frac{xz}{x}\right)=\frac{2}{3}\left(2x+z\right)\)

\(\Rightarrow M\le\frac{1}{9}\left(2y+z\right)+\frac{1}{3}\left(2z+y\right)+\frac{2}{3}\left(2x+z\right)=\frac{13}{9}x+\frac{5}{9}y+\frac{12}{9}z\)

\(=\frac{1}{9}\left(13x+5y+12z\right)=\frac{1}{9}.9=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{10}\)

17 tháng 12 2017

bạn ơi hình như tìm min

17 tháng 12 2017

Áp dụng 2 bđt đó là : 1/a+1/b+1/c >= 9/a+b+c và ab+bc+ca <= a^2+b^2+c^2

A >= 9/6+xy+yz+zx >= 9/6+x^2+y^2+z^2 = 9/6+3 = 2

Dấu "=" xảy ra <=> x=y=z=1

Vậy Min A = 1 <=> x=y=z=1

k mk nha

17 tháng 12 2017

\(\left(1+\frac{x}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3-x^2+x-1}\right)\)   \(ĐKXĐ:x\ne\pm1\)

\(=\left(\frac{x^2+1+x}{x^2+1}\right):\left[\frac{\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(=\frac{x^2+x+1}{x^2+1}:\frac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\frac{x^2+x+1}{x^2+1}.\frac{\left(x^2+1\right)\left(x-1\right)}{\left(x-1\right)^2}\)

\(=\frac{x^2+x+1}{x-1}\)

17 tháng 12 2017

 ĐKXĐ : x khác 1

Phân thức = x^2+1+x/x^2+1  : [1/x-1 - 2x/(x-1).(x^2+1)]

 = x^2+x+1/x^2+1 : [x^2+1-2x/(x-1).(x^2+1)]

 = x^2+x+1/x^2+1  : [(x-1)^2/(x-1).(x^2+1)]

 = x^2+x+1/x^2+1 : x-1/x^2+1

 = x^2+x+1/x^2+1 . x^2+1/x-1 = x^2+x+1/x-1

k mk nha

16 tháng 12 2017

ta có P=\(\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)

Áp dụng bđt cố si ta có 

\(\sqrt{a-1}\le\frac{1}{2}\left(a-1+1\right)=\frac{1}{2}a\Rightarrow\frac{\sqrt{a-1}}{a}\le\frac{1}{2}\)

Tương tự mấy cái kia rồi + vào, để ý dấu = 

1 tháng 7 2020

Bạn tham khảo tại đây ạ!

Câu hỏi của danh Vô - Toán lớp 9 - Học toán với OnlineMath

15 tháng 12 2017

Ta có \(\frac{3x^2+8x+6}{x^2+2x+1}=\frac{3x^2+6x+3+2x+2+1}{\left(x+1\right)^2}=\frac{3\left(x+1\right)^2+2\left(x+1\right)+1}{\left(x+1\right)^2}\)

\(=3+\frac{2}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=t\), biểu thức trở thành: \(t^2+2t+3=\left(t+1\right)^2+2\ge2\)

Vậy GTNN của phân thức là 2, khi t = -1 tức là x = -2.