K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E F M K

Bài làm

a) Xét tam giác DMB và tam giác FEM có:

DM = ME ( M là trung điểm của DE )

\(\widehat{DMB}=\widehat{FME}\)( Hai góc đối đỉnh )

BM = MF ( M là trung điểm của BF )

=> Tam giác DMB và tam giác FEM ( c.g.c )

=> BD = FE ( 2 cạnh tương ứng )

b) Vì BD = CE ( giả thiết )

Mà BD = FE ( cmt )

=> CE = FE

=> ÈC cân tại E

=> \(\widehat{ECF}=\widehat{EFC}\)( Hai góc ở đáy )

c) Tự làm

# Học tốt #

8 tháng 4 2019

f(x)= x2- 2003x -x+2003

     = x(x-2003) - (x-2003)

     = (x-2003)(x-1)

vậy nghiệm của đa thức là 1 và 2003

cách giải khác  ta có     f(x)=Ax2+Bx+C

                                  với  A=1 ; B=-2004 ; C=2003

                              ta có A+B+C=1-2004+2003=0

                                  =)) pt có nghiệm là 1 và C/A 

                                         hay nghiệm là 1 và 2003

\(\Delta ABC\)có đường cao AH(gt) => Góc AHB = 90 độ

Xét tam giác AHB vuông tại H có

Góc BAH + góc ABh = 90 độ( do góc ABH = 90 độ

=> góc BAI + góc ABI = 45 độ

Có I nằm giữa B và F => Góc AIF là góc ngoài của tam giác BIA

=> góc AIF= góc ABI+ góc IAB= 45 độ (1)

Có góc BAH = 2 (góc C)

=> góc IAH= góc C

Ta lại có : góc FBC + góc IAH =45 độ

=> góc FBC + góc C =45 độ

=> góc AFI= 45 độ ( là góc ngoài của tam giác FBC) (2)

Từ (1) và (2) => tam giác AIF cân tại A(*)

Xét tam giác AIF có

góc AIF+ góc AFI + góc FAI=180 độ

=> góc IAF =90 độ(**)

Từ *) và (**) => tam giác AIFvuông cân tại A

https://olm.vn/hoi-dap/detail/5819899271.html

8 tháng 4 2019

                                                                                  Dân ta phải biết sử ta                                                                                                                                                                                 Cái gì mình không biết mình tra google.

ĐỂ MÌNH GIẢI LUÔN CHO , CÁC BẠN VÀO THAM KHẢO NHÉ , THẤY ĐÚNG THÌ CHO XIN 3K NHA :

*Cách 1 :Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).

* Cách 2 : Vậy ta sẽ chứng minh bằng phản chứng 

- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6 
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4 
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn 
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn 
- .... 
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số 
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12
0
 
 
0
 
8 tháng 4 2019

*Cách 1 :Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).

* Cách 2 : Vậy ta sẽ chứng minh bằng phản chứng 

- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6 
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4 
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn 
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn 
- .... 
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số 
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12

8 tháng 4 2019

bài này m lm r mak Thư

8 tháng 4 2019

mik nghĩ đường phân giác phải là BD.

cách giải như sau:

vì BD và CE là 2 đường phân giác của tam giác ABC, mà chúng cắt nhau tại I

nên I là giao 3 đường phân giác của tam giác ABC.

=> AI là đường phân giác thứ 3 của tam giác ABC.

suy ra: góc BAH = góc CAH

tam giác AHB và tam giác AHC có:

AH: cạnh chung

góc BAH = góc CAH (chứng minh trên)

AB = AC (vì tam giác ABC cân tại A)

Do đó: tam giác AHB = tam giác AHC(c.g.c)

15 tháng 4 2019

t ko bt lm r :))

8 tháng 4 2019

Nhớ lập luận nhé