cho đa thức p(x) = (2x-1)6 +(x-2)7=a7x7+a6x6+...+a1x+a0. hãy tính giá trị của T=a7+a6+...+a1+a0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$. khi đó:
$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3$
$=-c^3+3abc+c^3=3abc$
Ta có đpcm.
ta có: a+b+c=0
=> c=-(a+b)
ta thay vào biểu thức:
=>a3+b3-(a+b)3=3ab(-a-b)
=>-3a2b-3ab2=-3a2b-3ab2
My có số kẹo là:
12 + 16 = 28 ( cái kẹo )
Đáp số: 28 cái kẹo.
\(\dfrac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)
\(\Leftrightarrow\left(\dfrac{1}{2}x+\dfrac{1}{2}\right)\left(3-x\right)-\left(3-x\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(\dfrac{1}{2}x+\dfrac{1}{2}-1\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(\dfrac{1}{2}x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(3-x\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy phương trình đã cho có tập nghiệm là \(S=\left\{3;1\right\}\).
$Toru$
\(\dfrac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)
=>\(\dfrac{1}{2}\left(3x-x^2+3-x\right)+x=3\)
=>\(\dfrac{1}{2}\left(-x^2+2x+3\right)+x=3\)
=>\(-x^2+2x+3+2x=6\)
=>\(-x^2+4x-3=0\)
=>\(\left(x-1\right)\left(x-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{1024}\)
\(2\times A=2\times\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{1024}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)
\(2\times A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{1024}\right)\)
\(A=1-\dfrac{1}{1024}=\dfrac{1023}{1024}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\times\left(1-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\times\dfrac{2023}{2024}\)
\(=\dfrac{1\times2\times3\times...\times2022\times2023}{2\times3\times4\times...\times2023\times2024}\)
\(=\dfrac{1}{2024}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\times\left(1-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\times\dfrac{2023}{2024}\)
\(=\dfrac{1\times2\times3\times...\times2022\times2023}{2\times3\times4\times...\times2023\times2024}\)
\(=\dfrac{1}{2024}\)
Câu lạc bộ có 20 bạn.
Chia thành 5 nhóm nhỏ, do đó mỗi nhóm sẽ có: 20 : 5 = 4 (bạn)
Giả sử nhóm 5 có số bạn lớp 4A, 4B ít nhất, thì nhóm 5 có thể chỉ có bạn lớp 4C.
Nếu nhóm 5 chỉ có bạn lớp 4C, thì nhóm 5 sẽ có 4 bạn lớp 4C.
Tổng số bạn lớp 4C là x, nhóm 5 đã có 4 bạn lớp 4C, do đó còn lại: x−4 bạn lớp 4C.
Nếu chia đều số bạn lớp 4C còn lại cho 4 nhóm còn lại, thì mỗi nhóm sẽ có: \(\dfrac{x-4}{4}\)
Vì nhóm 5 có số bạn lớp 4C là 4 bạn, trong khi các nhóm khác có số bạn lớp 4C ít hơn hoặc bằng \(\dfrac{x-4}{4}\)
Vậy nhóm có số bạn lớp 4C nhiều nhất là nhóm 5.
Lời giải:
Ta có:
$P(1)=(2.1-1)^6+(1-2)^7=a_7.1^7+a_6.1^6+....+a_1.1+a_0$
$\Rightarrow 1+(-1)=a_7+a_6+a_5+....+a_1+a_0$
$\Rightarrow a_7+a_6+a_5+....+a_1+a_0=0$