Có bao nhiêu sô tự nhiên có 4 chữ số lập bởi các chữ số 1, 2,3 biết rằng số đó chia hết cho 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D C B I K P
Ta có \(\widehat{AIP}=\widehat{DAP}\) (Cùng phụ với góc ADI) nên \(\Delta IAP\sim\Delta ADP\left(g-g\right)\)
\(\Rightarrow\frac{AP}{DP}=\frac{AI}{DA}\Rightarrow\frac{AP}{DP}=\frac{AK}{DC}\)
Lại có \(\widehat{IAD}=\widehat{ADP}\) nên \(\widehat{PAK}=\widehat{PDC}\) (Cùng phụ với hai góc trên)
Vậy nên \(\Delta PAK\sim\Delta PDC\left(c-g-c\right)\)
\(\Rightarrow\widehat{APK}=\widehat{DPC}\)
\(\Rightarrow\widehat{APK}+\widehat{KPD}=\widehat{DPC}+\widehat{KPD}\)
\(\Rightarrow\widehat{APD}=\widehat{KPC}\)
\(\Rightarrow\widehat{KPC}=90^o\)
Vậy nên CP vuông góc KP.
Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )
bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé
đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)
áp dụng định lí six paths of Pain :) ta có
\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì
thay vào ta được :)
\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
áp dụng cô si sáp cho 2 số ta có
\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng
\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng
\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng
cộng các vế lại ta được và rút 2/2 ta được :))
\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hình như BDT đã được chứng minh :))
theo bài của bạn Phạm quốc cường ta có :))
\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))
tức là \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))
tức là định Lí six paths of Pain luôn đúng :))
dấu = xảy ra khi nào thì mình éo biết được :))
: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))
\(\left(x^2-9\right)=12x+1\)
\(\Leftrightarrow\)\(x^2-9-12x-1=0\)
\(\Leftrightarrow\)\(x^2-12x-10=0\)
\(\Leftrightarrow\)\(x^2-12x+36-46=0\)
\(\Leftrightarrow\)\(\left(x-6\right)^2=46\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=\sqrt{46}\\x-6=-\sqrt{46}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{46}+6\\x=-\sqrt{46}+6\end{cases}}\)
Vậy..
P/S: mk cx ko bít đúng hay sai nữa, bn tham khảo nha
Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)
Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)
Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2)
Từ (1) và (2) => đpcm
Đặt \(a=x+4\) thay vào phương trình ta đc:
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Leftrightarrow\)\(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=16\)
\(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)
\(\Leftrightarrow\)\(2\left(a^2-1\right)\left(a^2+7\right)=0\)
Vì \(a^2+7\ne0\)
nên \(a^2-1=0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=1\\a=-1\end{cases}}\)
Thay trở lại ta có:
\(\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)
Vậy...
(x+3)4+(x+5)4=16
(x4+34)+(x4+54)=16
(x4+81)+(x4+625)
bye ko biết lam nữa
Gọi vận tốc ôtô thứ nhất là x km/h (x>0)
=> Vận tốc ôtô thứ hai sẽ là: 2x/3 km/h
Vì hai xe đi ngược chiều và cùng thời gian nên trong 1 giờ hai xe đã đi được quãng đường dài:
x + 2x/3 = 5x/5 km
=>Tổng chiều dài quãng đường AB:
5x/3 * 5 = 25x/3 km
=> Thời gian xe thứ nhất đi hết quãng đường AB:
25x/3 : x = 25/3 h = 8 h 30 phút
=> Thời gian xe thứ hai đi hết quãng đường AB:
25x/3 : 2x/3 =25/2 h = 12 h 30 phút
Gọi vận tốc ôtô thứ nhất là x km/h (x>0)
=> Vận tốc ôtô thứ hai sẽ là: 2x/3 km/h
Vì hai xe đi ngược chiều và cùng thời gian nên trong 1 giờ hai xe đã đi được quãng đường dài:
x + 2x/3 = 5x/5 km
=>Tổng chiều dài quãng đường AB:
5x/3 * 5 = 25x/3 km
=> Thời gian xe thứ nhất đi hết quãng đường AB:
25x/3 : x = 25/3 h = 8 h 30 phút
=> Thời gian xe thứ hai đi hết quãng đường AB:
25x/3 : 2x/3 =25/2 h = 12 h 30 phút
Ta cần tìm bộ 4 số được lấy từ 3 số 1, 2, 3 mà có tổng chia hết cho 9.
Ta có 1 + 2 + 3 + 3 = 2 + 2 + 2 + 3 = 9
Vậy các số tự nhiên được tạo thành là: 1233, 1323, 1332, 3123, 3132, 3213, 3231, 3321, 3312, 2223, 2232, 2322, 3222.
Vậy có 13 số tự nhiên được tạo thành.
nếu ko chia hết cho 9 thì có 27 số.nhưng chia hết cho 9 thì chỉ có 1 số là:333