Cho \(P\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x-1\)
Tính P(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì BH=9 , HC=16
=> BC=25
xét tam giác ABC ...., ta có
BC^2=CA^2+AB^2
hay 25^2=20^2 +Ab^2
625=400 + AB^2
AB^2=225
AB=15
xét tam giác ABH...., ta có
AB^2=AH^2 + BH^2
hay 15^2= Ah^2 + 9^2
225= AH^2 +81
AH^2= 144
AH=12
thêm kl và những chỗ còn thiếu vào nhé
Ta có: \(BC=BH+CH=9+16=25\)
Áp dụng định lý Py- ta - go vào \(\Delta ABC\), ta được:
\(AB^2=BC^2-AC^2\)
\(\Leftrightarrow AB^2=25^2-20^2\)
\(\Leftrightarrow AB^2=625-400\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15\)
Áp dụng định lý Py- ta - go vào \(\Delta AHC\), ta được:
\(AH^2=AC^2-CH^2\)
\(\Leftrightarrow AH^2=20^2-16^2\)
\(\Leftrightarrow AH^2=400-256\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}=12\)
Bài làm
BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)
Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202
=625−400=225=152=625−400=225=152
Vậy AB=15cm
Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122
Vậy AH= 12cm
# Học tốt #
Gọi đường thẳng chứa điểm M là d đường thẳng chứa N là a
Vì \(\widehat{M3}=\widehat{N1}\)( gt)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow d//a\)( dấu hiệu nhận biết )
\(\Rightarrow\widehat{M2}=\widehat{N4}\)( 2 góc so le trong)
\(\widehat{M1}=\widehat{N1}\)( 2 góc đồng vị )
\(\widehat{M3}=\widehat{N3}\)( 2 góc đồng vị )
\(\widehat{M3}+\widehat{N4}=180^0\)(2 góc trong cùng phía )
a) câu A bạn không cho đủ giữ kiện nên mình không thể trả lời!
b) Tam giác ABC có: ABC+ACB+BAC=1800
Hay CAB=1800-(ACB+ABC) mà ACB=ABC=700(theo định lí)
Suy ra: CAB=1800-(700+70)=1800-1400=400
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Em tham khaoe link này nhé!
Bài giải
Ta có : \(P=\frac{a^2}{x}+\frac{b^2}{y}\) đạt GTNN khi \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN
Mà \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN khi \(a^2\) và \(b^2\) cùng đạt giá trị nhỏ nhất
\(\Rightarrow\text{ }a^2\text{ và }b^2=0\)
\(\Rightarrow\text{ }a,b=0\)
\(\text{Vì }0\) chia số nào cũng bằng 0
\(\Rightarrow\text{ }GTNN\text{ của }P=0\)
a) Vì MI//BC
=> MI//BK ( K \(\in\)BC)(1)
Vì MI//BC
=> AMI = ABC ( đồng vị)
Mà IK//AB
=> AMI = MIK
=> MIB = MBK (2)
Từ (1) và (2)
=> MIKB là hình bình hành
=> MI = BK
=> IK = MB
Mà M là trung điểm AB
=> AM = MB
=> IK = AM
c) Vì MI //BC
M là trung điểm AB
=> MI là đường trung bình ∆ABC
=> I là trung điểm AC
=> AI = IC
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
B= \(\frac{1+2017-x}{2017-x}\)= \(\frac{1}{2017-x}+1\)
Để Bmax thì \(\frac{1}{2017-x}\)đạt GTLN dương
hay 2017-x đạt GTNN mà x thuộc Z => 2017-x nhỏ nhất là 1 khi x=2016
các bạn ơi đây là đề sai đúng ko ?
Nếu tính ra thì vẫn đc
\(P\left(x\right)=x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}+...+\left(99+1\right)x-1\)
\(P\left(x\right)=x^{99}-99x^{99}-99x^{98}+99x^{98}-99x^{97}+...+99x+x-1\)
\(P\left(x\right)=x^{98}\left(x-99\right)+x^{97}\left(x-99\right)-x^{96}\left(x-99\right)+...+x\left(x-99\right)-1\)
\(P\left(x\right)=\left(x^{98}+x^{97}-x^{96}+x^{95}-...-x^2+x\right)\left(x-99\right)-1\)
Vẫn đau đầu @@ chắc đề sai thật