Tìm x, y biết \(\hept{\begin{cases}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5\sqrt{12}+4\sqrt{27}-6\sqrt{48}\)\(=5\sqrt{4.3}+4\sqrt{9.3}-6\sqrt{16.3}\)\(=5.2\sqrt{3}+4.3\sqrt{3}-6.4\sqrt{3}\)\(=10\sqrt{3}+12\sqrt{3}-24\sqrt{3}\)\(=\left(10+12-24\right)\sqrt{3}=-2\sqrt{3}\)
b) \(\left(\sqrt{300}-2\sqrt{675}+5\sqrt{75}\right):3\)\(=\left(\sqrt{100.3}-2\sqrt{225.3}+5\sqrt{25.3}\right):3\)\(=\left(10\sqrt{3}-2.15\sqrt{3}+5.5\sqrt{3}\right):3\)\(=\left(10\sqrt{3}-30\sqrt{3}+25\sqrt{3}\right):3\)\(=\left[\left(10-30+25\right)\sqrt{3}\right]:3\)\(=\left(5\sqrt{3}\right):3=\frac{5\sqrt{3}}{3}\)
Answer:
Ta có:
\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)
\(=6x-1-2\sqrt{5}x+\sqrt{5}\)
\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)
Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)
Ta thấy:
\(a=6-2\sqrt{5}\ne0\)
\(b=\sqrt{5}-1\inℝ\)
\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất
\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất
Ta thấy:
Hệ số \(a=6-2\sqrt{5}\)
Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)
Thấy được:
\(6-2\sqrt{5}>0\)
\(\Rightarrow a=6-2\sqrt{5}>0\)
Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) ( điều kiện : x>=1)
<=> \(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}}\)
<=> \(\sqrt{\left(\sqrt{x-1}+1\right)}^2+\sqrt{\left(\sqrt{x-1}-1\right)}^2=2\)
<=> \(|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\)(1)
Vì \(\sqrt{x-1}\ge0\forall x\ge1\)
\(=>\sqrt{x-1}+1\ge1>0\)
<=> \(|\sqrt{x-1}+1|=\sqrt{x-1}+1\)
Phương trình (1) <=> \(\sqrt{x-1}+1+|\sqrt{x-1}-1|=2\)
Phần sau bạn xét 2 trường hợp \(\sqrt{x-1}-1\ge0\)và \(\sqrt{x-1}-1< 0\)để thay mỗi trường hợp vào phương trình (1) và tự làm nốt phần còn lại bạn nhé.
a, ^ACB = 900 ( góc nt chắn nửa đường tròn )
=> BC vuông AC
Lại có OM vuông AC ( gt ) => OM // BC
b, Vì OC = OA = R
=> tam giác AOC cân, OM vuông AC nên OM đồng thời là đường phân giác
=> ^AOM = ^MOC
Xét tam giác AMO và tam giác CMO ta có :
OA = OC = R
^AOM = ^MOC ( cmt )
OM _ chung
Vậy tam giác AMO = tam giác CMO ( ch - gn )
=> ^MAO = ^MCO = 900 ( 2 góc tương ứng )
=> MC là tiếp tuyến (O)
Answer:
\(^3\sqrt{x+1}+^3\sqrt{x-1}=^3\sqrt{5x}\)
\(\Leftrightarrow\left(^3\sqrt{x+1}+^3\sqrt{x-1}\right)^3=5x\)
\(\Leftrightarrow x+1+x-1+3^3\sqrt{\left(x+1\right).\left(x-1\right)}\left(^3\sqrt{x+1}+^3\sqrt{x-1}\right)=5x\)
\(\Leftrightarrow^3\sqrt{\left(x+1\right).\left(x-1\right)}^3\sqrt{5x}=x\)
\(\Leftrightarrow5x.\left(x+1\right).\left(x-1\right)=x^3\)
\(\Leftrightarrow5x^3-5x=x^3\)
\(\Leftrightarrow4x^3-5x=0\)
\(\Leftrightarrow x.\left(4x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
Bạn đang viết linh tinh đúng ko?
\(x+xy+y=3+4\sqrt{2}\)
\(\Rightarrow2x+2xy+2y=6+8\sqrt{2}\)
Ta có : \(x^2+y^2+2x+2xy+2y=11+6+8\sqrt{2}\)
\(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1=18 +8\sqrt{2}\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1=18+8\sqrt{2}\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(3+\sqrt{2}+1\right)^2\)
\(\Rightarrow\left(x,y\right)=\left(3,\sqrt{2}\right)\)