K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6

A = \(x^2\) + 5\(x\) - 6

A = \(x^2\) - \(x\) + 6\(x\) - 6

A = (\(x^2\) - \(x\)) + (6\(x\) - 6)

A = \(x\).(\(x-1\)) + 6.(\(x-1\))

A = (\(x\) - 1).(\(x\) + 6)

10 tháng 6

loading...

10 tháng 6

loading...

chưa được nha bạn

phải ghi rõ thế này nè: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

Cái này mới được điểm!

10 tháng 6

Nếu ch đủ thì bị trừ bnh điểm ạ

\(\left\{{}\begin{matrix}\left(x-1\right)\left(2y+1\right)=\left(x-3\right)\left(y-5\right)+xy\\\left(x+1\right)\left(y+1\right)=\left(2x-1\right)\left(y+1\right)-xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2xy+x-2y-1=xy-5x-3y+15+xy\\xy+x+y+1=2xy+2x-y-1-xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y-1=-5x-3y+15\\x+y+1=2x-y-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x+y=16\\-x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+2y=32\\-x+2y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}13x=34\\6x+y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{34}{13}\\y=16-6x=16-6\cdot\dfrac{34}{13}=\dfrac{4}{13}\end{matrix}\right.\)

9 tháng 6

ĐKXĐ: \(x>0;x\ne 4\)

\(\frac{\sqrt x-1}{\sqrt x-2}-\frac{5\sqrt x-8}{x-2\sqrt x}=\frac{\sqrt x(\sqrt x-1)}{\sqrt x(\sqrt x-2)}-\frac{5\sqrt x-8}{\sqrt x(\sqrt x-2)}\\= \frac{x-\sqrt x-(5\sqrt x+8)}{\sqrt x(\sqrt x-2)}=\frac{x-6\sqrt x+8}{\sqrt x(\sqrt x-2)}\\=\frac{(\sqrt x-2)(\sqrt x-4)}{\sqrt x(\sqrt x-2)}=\frac{\sqrt x-4}{\sqrt x}\)

8 tháng 6

    \(\sqrt[3]{x-3}\) = 4

      \(x-3\) = 43

      \(x\) - 3 = 64

      \(x\)       = 64 + 3

       \(x\)      = 67

     Vậy \(x\)  = 67 

8 tháng 6

Phần tô đậm là phần nào thế bạn 

AH
Akai Haruma
Giáo viên
8 tháng 6

Lời giải:

Áp dụng BĐT AM-GM:

$\frac{a^4}{b^2(c+a)}+\frac{b(c+a)}{4}+\frac{b}{2}+\frac{1}{2}\geq 4\sqrt[4]{\frac{a^4}{b^2(c+a)}.\frac{b(c+a)}{4}.\frac{b}{2}.\frac{1}{2}}=2a$

Làm tương tự với các phân thức còn lại và cộng theo vế, thu gọn thì được:

$A+\frac{ab+bc+ac}{2}+\frac{a+b+c}{2}+\frac{3}{2}\geq 2(a+b+c)$

$\Leftrightarrow A\geq \frac{3}{2}(a+b+c)-\frac{3}{2}-\frac{ab+bc+ac}{2}=\frac{9}{2}-\frac{3}{2}-\frac{ab+bc+ac}{2}=3-\frac{ab+bc+ac}{2}$
Theo hệ quả quen thuộc của BĐT AM-GM:

$ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{3^2}{3}=3$

$\Rightarrow A\geq 3-\frac{ab+bc+ac}{2}\geq 3-\frac{3}{2}=\frac{3}{2}$
Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$