K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
$A=a^2+ab+b^2-3b-3a+3$

$4A=4a^2+4ab+4b^2-12a-12b+12$

$=(4a^2+4ab+b^2)-12a-12b+3b^2+12$

$=(2a+b)^2-6(2a+b)+9+(3b^2-6b+3)$

$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$

Vậy $A_{\min}=0$. Giá trị này đạt tại $2a+b-3=b-1=0$

$\Leftrightarrow b=1; a=1$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu B tương tự câu A nhé. Chỉ khác mỗi đặt tên biến.

---------------

$C=x^2+5y^2-4xy+2y-3$

$=(x^2-4xy+4y^2)+(y^2+2y)-3$

$=(x-2y)^2+(y^2+2y+1)-4$

$=(x-2y)^2+(y+1)^2-4\geq 0+0-4=-4$

Vậy $C_{\min}=-4$. Giá trị này đạt tại $x-2y=y+1=0$

$\Leftrightarrow y=-1; x=-2$

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$x^3+y^3=(x+y)^3-3xy(x+y)=2^3-3xy.2=8-6xy$

$=8-3.2xy=8-3[(x+y)^2-(x^2+y^2)]=8-3(2^2-34)=98$

----------------

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=34^2-\frac{1}{2}(2xy)^2$

$=34^2-\frac{1}{2}[(x+y)^2-(x^2+y^2)]^2=34^2-\frac{1}{2}(2^2-34)^2=706$

29 tháng 12 2023

Đề sai, em xem lại đề nhé

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:

a. Áp dụng định lý Pitago: 

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) 

Dễ thấy $DM$ là đường trung bình của tam giác ABC ứng với cạnh $AC$

$\Rightarrow DM\parallel AC$

$\Rightarrow DM\perp AB$

Tam giác $MBD$ và $MAD$ có:

$BD=DA$

$\widehat{MDB}=\widehat{MDA}=90^0$

$DM$ chung

$\Rightarrow \triangle MBD=\triangle MAD$ (c.g.c)

$\Rightarrow MA=MB=\frac{BC}{2}=10:2=5$ (cm)

c.

Tứ giác $AEBM$ có 2 đường chéo $AB, EM$ cắt nhau tại trung điểm $D$ của mỗi đường nên $AEBM$ là hình bình hành.

Mà $AB\perp EM$ ở $D$ (suy ra từ việc cm $MD\perp AB$)

$\Rightarrow AEBM$ là hình thoi.

c.

Để $AEBM$ là hình vuông thì $\widehat{AMB}=90^0$

$\Leftrightarrow AM\perp BC$

$\Leftrightarrow$ trung tuyến $AM$ đồng thời là đường cao 

$\Leftrightarrow \triangle ABC$ cân tại $A$

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Hình vẽ:

27 tháng 12 2023

\(3x^2+2y^2=5xy\)

\(\Leftrightarrow3x^2+2y^2-5xy=0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)

\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S

\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)

26 tháng 12 2023

P = \(\dfrac{2x+3}{x+3}\) (đk \(x\ne\) - 3; \(x\in\) Z-

P \(\in\) Z ⇔ 2\(x\) + 3 ⋮ \(x\) + 3

              2\(x\) + 6  -3 ⋮ \(x\) + 3

          2.(\(x\) + 3) - 3 ⋮ \(x\) + 3

                          3  \(⋮\)  \(x\) + 3

\(x\) + 3 \(\in\) Ư(3) = {-3;  -1; 1; 3}

Lập bảng ta có: 

\(x\) + 3  - 3  -1  1 3
\(x\)   -6 -4 -2 0

Vì  \(x\) \(\in\) Z- nên theo bảng trên ta có:

\(x\) \(\in\) {- 6; - 4; -2}

 

 

25 tháng 12 2023

Ta có

\(\dfrac{BM}{AM}=\dfrac{BC}{AC}=\dfrac{a}{b}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

\(\dfrac{CN}{AN}=\dfrac{BC}{AB}=\dfrac{a}{b}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{CN}{AN}\Rightarrow\dfrac{BM}{CN}=\dfrac{AM}{AN}\) => MN//BC (Talet)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MN}{BC}\Rightarrow\dfrac{AM}{b}=\dfrac{MN}{a}\)  (1)

Ta có

\(\dfrac{AM}{BM}=\dfrac{AC}{BC}=\dfrac{b}{a}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

\(\Rightarrow\dfrac{AM}{b}=\dfrac{BM}{a}=\dfrac{AM+BM}{a+b}=\dfrac{AB}{a+b}=\dfrac{b}{a+b}\)

\(\Rightarrow AM=\dfrac{b^2}{a+b}\) Thay vào (1)

\(\Rightarrow\dfrac{\dfrac{b^2}{a+b}}{b}=\dfrac{MN}{a}\Rightarrow\dfrac{b}{a+b}=\dfrac{MN}{a}\Rightarrow MN=\dfrac{ab}{a+b}\)

25 tháng 12 2023

Ta có

����=����=��AMBM=ACBC=ba (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

����=����=��ANCN=ABBC=ba (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

⇒����=����⇒����=����AMBM=ANCNCNBM=ANAM => MN//BC (Talet)

⇒����=����⇒���=���ABAM=BCMNbAM=aMN  (1)

Ta có

����=����=��BMAM=BCAC=ab (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

⇒���=���=��+���+�=���+�=��+�bAM=aBM=a+bAM+BM=a+bAB=a+bb

⇒��=�2�+�AM=a+bb2 Thay vào (1)

⇒�2�+��=���⇒��+�=���⇒��=���+�ba+bb2=aMNa+bb=aMNMN=a+bab
 

25 tháng 12 2023

\(\left(-\dfrac{3x}{5y^2}\right).\left(-\dfrac{5y^2}{6x^3}\right)\)

\(=\dfrac{-3x.\left(-5y^2\right)}{5y^2.6x^3}\)

\(=\dfrac{1}{2x^2}\)

24 tháng 12 2023

b) Theo Thales: \(\dfrac{DE}{DC}=\dfrac{AO}{AC};\dfrac{CF}{CD}=\dfrac{BO}{BD}\)

Theo câu a thì \(\dfrac{AO}{AC}=\dfrac{BO}{BD}\) \(\Rightarrow\dfrac{DE}{DC}=\dfrac{CF}{CD}\Rightarrow DE=CF\) (đpcm)

c) Từ \(DE=CF\Rightarrow\dfrac{DE}{EF}=\dfrac{CF}{EF}\)

Mà theo Thales: \(\dfrac{DE}{EF}=\dfrac{IO}{OF};\dfrac{CF}{EF}=\dfrac{JO}{OE}\) 

Do đó \(\dfrac{IO}{OF}=\dfrac{JO}{OE}\) \(\Rightarrow\) IJ//CD//AB

d) Dùng định lý Menelaus đảo nhé bạn. Ta có \(\dfrac{HA}{HD}=\dfrac{AB}{CD}=\dfrac{OA}{OC}\) nê \(\dfrac{HA}{AD}.\dfrac{OC}{OA}=1\). Do K là trung điểm EF mà \(DE=CF\) nên K cũng là trung điểm CD hay \(\dfrac{KD}{KC}=1\). Do đó \(\dfrac{HA}{AD}.\dfrac{KD}{KC}.\dfrac{OC}{OA}=1\). Theo định lý Menalaus đảo \(\Rightarrow\)H, O, K thẳng hàng (đpcm)