119×24-53×23_24×66 hướng dẫn giúp em cách thuận tiện nhất ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(5^{56}=\left(5^7\right)^8=78125^8\)
\(11^{24}=\left(11^3\right)^8=1331^8\)
mà 78125>1331
nên \(5^{56}>11^{24}\)
b: \(5^{23}=5\cdot5^{22}< 6\cdot5^{22}\)
c:
\(7\cdot2^{13}< 8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)
a: \(\dfrac{21}{25}\cdot\dfrac{11}{9}\cdot\dfrac{5}{7}=\dfrac{21}{7}\cdot\dfrac{5}{25}\cdot\dfrac{11}{9}\)
\(=3\cdot\dfrac{11}{9}\cdot\dfrac{1}{5}=\dfrac{11}{3}\cdot\dfrac{1}{5}=\dfrac{11}{15}\)
b: \(\dfrac{5}{23}\cdot\dfrac{17}{26}+\dfrac{5}{23}\cdot\dfrac{9}{26}\)
\(=\dfrac{5}{23}\left(\dfrac{17}{26}+\dfrac{9}{26}\right)\)
\(=\dfrac{5}{23}\cdot1=\dfrac{5}{23}\)
c: \(\dfrac{7}{13}\cdot\dfrac{5}{19}+\dfrac{7}{19}\cdot\dfrac{8}{13}-3\dfrac{7}{19}\)
\(=\dfrac{7}{19}\left(\dfrac{5}{13}+\dfrac{8}{13}\right)-3-\dfrac{7}{19}\)
\(=\dfrac{7}{19}-3-\dfrac{7}{19}=-3\)
\(a,\dfrac{21}{25}.\dfrac{11}{9}.\dfrac{5}{7}\)
\(=\dfrac{21.11.5}{25.9.7}\)
\(=\dfrac{1.11.1}{5.3.1}\)
\(=\dfrac{11}{15}\)
\(b,\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{9}{26}\)
\(=\dfrac{5}{23}.\left(\dfrac{17}{26}+\dfrac{9}{26}\right)\)
\(=\dfrac{5}{23}.1\)
\(=\dfrac{5}{23}\)
\(c,\dfrac{7}{13}.\dfrac{5}{19}+\dfrac{7}{19}.\dfrac{8}{13}\)
\(=\dfrac{7}{19}.\dfrac{5}{13}+\dfrac{7}{19}.\dfrac{8}{13}\)
\(=\dfrac{7}{19}.\left(\dfrac{5}{13}+\dfrac{8}{13}\right)\)
\(=\dfrac{7}{19}.1\)
\(=\dfrac{7}{19}\)
(x - 45) x 27 = 0
=> x - 45 = 0 : 27
=> x - 45 = 0
=> x = 0 + 45
=> x = 45
Vậy: ..
`(x - 45) . 27 = 0`
`=> x - 45 = 0 : 27`
`=> x - 45 = 0`
`=> x = 45`
Vậy `x = 45`
\(5^7-5^6+5^5\\ =5^5\cdot5^2-5^5\cdot5+5^5\\ =5^5\cdot\left(5^2-5+1\right)\\ =5^5\cdot\left(25-5+1\right)\\ =5^5\cdot21⋮21\)
=> `5^7-5^6+5^5` chia hết cho 21
`5^7 - 5^6 + 5^5`
`= 5^5 . (5^2 - 5 + 1)`
`= 5^5 . (25 - 5 + 1)`
`= 5^5 . 21 vdots 21 (đpcm)`
`2x + 3x + 1 - 4x + 2 = 36`
`=> (2+3-4) x + 3 = 36`
`=> x + 3 = 36`
`=> x = 36-3`
`=> x = 33`
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55=7^3.7.11.5=5.77.7^3\)
Do 77 chia hết 77 \(\Rightarrow5.77.7^3⋮77\)
Vậy \(\left(7^6+7^5-7^4\right)⋮77\)
\(\left(3x-2^4\right)\cdot7^{13}=2\cdot7^{14}\)
=>\(3x-16=2\cdot\dfrac{7^{14}}{7^{13}}=2\cdot7=14\)
=>3x=16+14=30
=>\(x=\dfrac{30}{3}=10\)
\(\left(3x-2^4\right).7^{13}=2.7^{14}\\ \Rightarrow\left(3x-16\right).7^{13}=2.7.7^{13}\\ \Rightarrow3x-16=2.7\\ \Rightarrow3x-16=14\\ \Rightarrow3x=30\\ \Rightarrow x=30:3\\ \Rightarrow x=10\)
Vậy: \(x=10\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
Từ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(VT=\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{bk^3+b^3}{dk^3+d^3}=\dfrac{b.\left(k+1\right)^3}{d.\left(k+1\right)^3}=\dfrac{b}{d}\)
\(VP=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b.\left(k+1\right)^3}{d.\left(k+1\right)^3}=\dfrac{b}{d}\)
Vậy \(VT=VP\left(đpcm\right)\)
____________
VT = vế trái
VP = vế phải
\(#NqHahh\)
\(119\times24-53\times23-24\times66\)
\(=\left(119-66\right)\times24-53\times23\)
\(=53\times24-53\times23\)
\(=53\times\left(24-23\right)\)
\(=53\times1\)
\(=53\)
\(119\cdot24-53\cdot23-24\cdot66\)
\(=24\left(119-66\right)-53\cdot23\)
\(=53\cdot24-53\cdot23=53\)