Cho đường tròn (O), dây BC không đi qua O, A thuộc cung lớn BC, M là điểm chính giữa cung nhỏ BC, tiếp tuyến tại M và C của đường tròn cắt nhau tại N. AB cắt CM tại K, AM cắt CN tại P.
CM tứ giác ACPK nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
phụ huynh hỏi mà mình có hỏi đâu
baiiiiiii
Ta có:
\(x^3+y^3+1=x^3+y^3+xyz=\left(x+y\right)\left(x^2+y^2-xy\right)+xyz\)
\(\ge\left(x+y\right).xy+xyz=xy\left(x+y+z\right)\)
Suy ra \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Tương tự ta cũng có: \(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)},\frac{1}{z^3+x^3+1}\le\frac{1}{xz\left(x+y+z\right)}\).
Cộng lại vế với vế ta được:
\(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Dấu \(=\)xảy ra khi \(x=y=z=1\).
a, Xét đường tròn (O) có :
^BDC = 900 ( góc nt chắn nửa đường tròn ) => CD vuông AB
^BEC = 900 ( góc nt chắn nửa đường tròn ) => BE vuông AC
b, Vì BE vuông AC => BE là đường cao tam giác ABC
CD vuông AB => CD là đường cao tam giác ABC
mà CD giao BE tại K => K là trực tâm
=> AK là đường cao tam giác ABC => AK vuông BC
Xét đường tròn (O), ta có M là điểm chính giữa của cung nhỏ BC \(\Rightarrow\widebat{MB}=\widebat{MC}\)
Xét tiếp đường tròn (O) có \(\widehat{BAM}\)và \(\widehat{CAM}\)là các góc nội tiếp lần lượt chắn các cung MB và MC của (O). Mà \(\widebat{MB}=\widebat{MC}\left(cmt\right)\)\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)(trong 1 đường tròn, các góc nội tiếp chắn các cung bằng nhau thì bằng nhau)
Lại xét đường tròn (O) có CP là tiếp tuyến tại C và dây cung CM \(\Rightarrow\widehat{PCM}=\frac{1}{2}sđ\widebat{CM}\)(góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn).
Mặt khác \(\widehat{CAM}\)là góc nội tiếp chắn \(\widebat{CM}\)nên \(\widehat{CAM}=\frac{1}{2}sđ\widebat{CM}\)(trong 1 đường tròn, góc nội tiếp chắn một cung bằng nửa số đo cung bị chắn)
\(\Rightarrow\widehat{PCM}=\widehat{CAM}\left(=\frac{1}{2}sđ\widebat{CM}\right)\)
Mà \(\widehat{CAM}=\widehat{BAM}\left(cmt\right)\Rightarrow\widehat{PCM}=\widehat{BAM}\left(=\widehat{CAM}\right)\Rightarrow\widehat{PCK}=\widehat{KAP}\)
Xét tứ giác ACPK có \(\widehat{PCK}=\widehat{KAP}\left(cmt\right)\)
\(\Rightarrow\)Tứ giác ACPK nội tiếp (tứ giác có hai đỉnh kề nhìn cạnh đối diện dưới dạng các góc bằng nhau thì tứ giác đó nội tiếp)
Bạn ơi, mình vừa mới nghĩ ra cách làm này bạn xem giúp mình có đúng ko ạ,
Xét đường tròn (O) có:
∠APC và ∠AKC là 2 góc có đỉnh nằm ngoài đường tròn,
=> \(\text{∠}APC=\frac{sd\widebat{AC}-sd\widebat{MC}}{2}\)
\(\text{∠}AKC=\frac{sd\widebat{AC}-sd\widebat{MB}}{2}\)
Mà M là điểm nằm giữa cung nhỏ BC
\(=>\widebat{MC}=\widebat{MB}\)
Vậy suy ra ∠APC = ∠AKC
=> Tứ giác ACPK nội tiếp