Cho a>b chứng minh. 7a - 4 > 7b - 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I
b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)
Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a)
\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)
a/ Xét 2 tg vuông BDE và tg vuông DCE có
\(\widehat{DEB}\) chung
\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )
=> tg BDE đồng dạng với tg DCE (g.g.g)
b/ Xét tg vuông DCE có
\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông DHC và tg vuông BDE có
\(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )
=> tg DHC đồng dạng với tg BDE
\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)
\(\Rightarrow DC^2=CH.DB\)
c/
Ta có
\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)
\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)
Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC
Xét tg vuông BCD có
\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)
Ta có
\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)
\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)
Ta có
CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)
\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)
A=1/2²+1/3²+1/4²+1/5²+...+1/2022²
Dễ thấy A > 1/2.3+1/3.4+1/4.5+1/5.6+...+1/2022.2023 = B
Và A < 1/1.2+1/2.3+1/3.4.5+1/4.5+...+1/2021.2022 = C
Ta có B = 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2022 - 1/2023
B = 1/2 - 1/2023 > 1/2
C = 1- 1/2 + 1/2 - 1/3 +.... + 1/2021 - 1/2022
= 1-1/2022 < 1
Vậy 1 > C > A > B > 1/2
Hay 1 >A>1/2
Suy ra A không phải là số tự nhiên.
Bạn muốn dạy kèm hoặc giải đáp mọi thắc mắc liên quan tới toán thì có thể liên hệ nhé
\(a,x< 12:\left(-\dfrac{3}{7}\right)=-\dfrac{36}{7}\)
b, x < - 1
a) Do tam giác ABC vuông tại A ta có
BC.BC = AB.AB + AC.AC
=>BC.BC = 36x36 +48x48 =3600
=>BC= 60(cm)
Diện tích của tam giác ABC vuông tại A là
S = 1/2 .AB.AC
Mặt khác AH là đường cao diện tích S còn có thể bằng
S = 1/2 . AH. BC
=> AB.AC = AH.BC
=> AH = AB.AC /BC = 36x48/60 =28.8 (cm)
b) Chứng minh tam giác đồng dạng ta chỉ cần chứng minh các góc bằng nhau là được HBA đồng dạng HAC
a. S toàn phần là 6a^2 nên cạnh hình lập phương là 6a^2=54 nên a^2 =9 nên a=3 cm
Vậy cạnh lập phương là 3 cm
b. V=a^3=6^3=216cm^3
\(a>b\Rightarrow7a>7b\) (do \(7>0\))
\(\Rightarrow7a-4>7b-4\)
ta có a>b
=>7a>7b
=> 7a-4>7b-4 ( dpcm)