K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

còn cái nịt. haha

Nếu Lan là học trò của thầy Tiến thì CÒN CÁI NỊT, còn đúng cái nịt thôi.

@Nghệ Mạt

#cua

27 tháng 11 2021

a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB

27 tháng 11 2021

TL :

Đây nhé

Xin lỗi phải chờ lâu

#####

Uchi ha

sáuke

nighy

undefined

undefined

27 tháng 11 2021

x=18.63325

27 tháng 11 2021

\(x-2\sqrt{x-5}=5\)

đkxđ \(x-5\ge0\Leftrightarrow x\ge5\)

phương trình đã cho \(\Leftrightarrow x-5-2\sqrt{x-5}=0\)\(\Leftrightarrow\left(\sqrt{x-5}\right)^2-2\sqrt{x-5}+1=1\)

\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2=1\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}-1=1\\\sqrt{x-5}-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}=2\\\sqrt{x-5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=4\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\left(nhận\right)\\x=5\left(nhận\right)\end{cases}}\)

Vậy phương trình đã cho có tập nghiệm \(S=\left\{5;9\right\}\)

a, \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)

\(=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\frac{1}{x+1}\right)\)

\(=\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}:\left(\frac{\sqrt{x}}{x+1}+\frac{1}{x+1}\right)\)

\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{x+1}\)

\(=\frac{\sqrt{x}-1}{x+1}.\frac{x+1}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)(1 )

b, Thay x = 2 vào ( 1 ) ta được :

\(P=\frac{\sqrt{2}-1}{\sqrt{2}+1}\)

c, Thay \(P=\frac{1}{3}\)vào ( 1 ) ta được :

\(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{3}\)

<=> \(3\sqrt{x}-3=\sqrt{x}+1\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(x=4\)