Cho hình chữ nhật ABCD vẽ điểm E đối xứng với B qua C vẽ điểm F đối xứng với D qua C
CM tứ giác BDEF là hình thoi
CM AC=DE
Gọi H là trung điểm của CD,K là trung điểm của EF .CM HK song song với AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu Lan là học trò của thầy Tiến thì CÒN CÁI NỊT, còn đúng cái nịt thôi.
@Nghệ Mạt
#cua
a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB
\(x-2\sqrt{x-5}=5\)
đkxđ \(x-5\ge0\Leftrightarrow x\ge5\)
phương trình đã cho \(\Leftrightarrow x-5-2\sqrt{x-5}=0\)\(\Leftrightarrow\left(\sqrt{x-5}\right)^2-2\sqrt{x-5}+1=1\)
\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2=1\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}-1=1\\\sqrt{x-5}-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}=2\\\sqrt{x-5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=4\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\left(nhận\right)\\x=5\left(nhận\right)\end{cases}}\)
Vậy phương trình đã cho có tập nghiệm \(S=\left\{5;9\right\}\)
a, \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)
\(=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\frac{1}{x+1}\right)\)
\(=\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}:\left(\frac{\sqrt{x}}{x+1}+\frac{1}{x+1}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{x+1}\)
\(=\frac{\sqrt{x}-1}{x+1}.\frac{x+1}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)(1 )
b, Thay x = 2 vào ( 1 ) ta được :
\(P=\frac{\sqrt{2}-1}{\sqrt{2}+1}\)
c, Thay \(P=\frac{1}{3}\)vào ( 1 ) ta được :
\(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{3}\)
<=> \(3\sqrt{x}-3=\sqrt{x}+1\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(x=4\)