K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

0
21 tháng 8 2023

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

20 tháng 8 2023

a) Ta dễ chứng minh \(\widehat{BIC}=90^o+\dfrac{\widehat{A}}{2}\)

Ta thấy \(\widehat{BFK}=\widehat{A}+\widehat{AEF}=\dfrac{\widehat{A}}{2}+\widehat{IAE}+\widehat{AEF}\)  \(=90^o+\dfrac{\widehat{A}}{2}\)

Nên \(\widehat{BIC}=\widehat{BFK}\)

Xét 2 tam giác BIC và BFK, ta có: 

\(\widehat{FBK}=\widehat{IBC}\) (do BI là tia phân giác của \(\widehat{FBC}\)) và \(\widehat{BIC}=\widehat{BFK}\left(cmt\right)\) 

\(\Rightarrow\Delta BIC~\Delta BFK\left(g.g\right)\) (đpcm)

b) Từ \(\Delta BIC~\Delta BFK\Rightarrow\dfrac{BI}{BF}=\dfrac{BC}{BK}\) \(\Rightarrow\dfrac{BI}{BC}=\dfrac{BF}{BK}\)

Xét 2 tam giác BIF và BCK, ta có

\(\dfrac{BI}{BC}=\dfrac{BF}{BK}\) và \(\widehat{IBF}=\widehat{CBK}\)

\(\Rightarrow\Delta BIF~\Delta BCK\left(c.g.c\right)\)

\(\Rightarrow\widehat{BKC}=\widehat{BFI}\)

Mà \(\widehat{BFI}=90^o\) nên \(\widehat{BKC}=90^o\) (đpcm)

20 tháng 8 2023

ai làm giúp phần a với, mãi ko ra:(((

20 tháng 8 2023

Ta có \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và 

\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)

\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)

\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))

\(T\le\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)

Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)

 (Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)

20 tháng 8 2023

 Bạn Lê Song Phương xem lại dùm nhé, thanks!

\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)

\(...\Rightarrow T\le2.3=6\)

\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:

a. Khi $m=2$ thì $(d_1)$ có pt $y=2x+2^2-1=2x+3$ nên $(d_1)\equiv (d_2)$ nên tọa độ giao điểm $A$ là mọi điểm nằm trên $y=2x+3$
b. $B\in Oy$ nên $x_B=0$

$B\in (d_2)$ nên $y_B=2x_B+3=2.0+3=3$

Vậy $B$ có tọa độ $(0,3)$

$C\in Ox$ nên $y_C=0$

$C\in (d_2)$ nên $y_C=2x_C+3\Rightarrow x_C=(y_C-3):2=\frac{-3}{2}$

Vậy $C(\frac{-3}{2},0)$

$S_{OCB}=\frac{OB.OC}{2}=\frac{|y_B|.|x_C|}{2}=3.\frac{3}{2}:2=\frac{9}{4}$ (đơn vị diện tích) 

c.

PT hoành độ giao điểm của $(d_1), (d_2)$:

$mx+m^2-1=2x+3$

$\Leftrightarrow m(x-2)=4-m^2(*)$

Để $(d_1)$ và $(d_2)$ cắt nhau ở trục tung thì $x=0$ là nghiệm của pt $(*)$

$\Leftrightarrow m.(0-2)=4-m^2$

$\Leftrightarrow -2m=4-m^2$
$\Leftrightarrow m^2-2m-4=0$
$\Leftrightarrow m=1\pm \sqrt{5}$

17 tháng 8 2023

\(x-6\sqrt{x-3}+6\text{=}x-3-6\sqrt{x-3}+9\)

\(\text{=}\left(\sqrt{x-3}\right)^2-2.3.\sqrt{x-3}+\left(3\right)^2\)

\(\text{=}\left(\sqrt{x-3}-3\right)^2\)

 

17 tháng 8 2023

A =  \(x-6\)\(\sqrt{x-3}\) + 6 (đkxd \(x>3\))

A = (\(x\) - 3) - 2.3.\(\sqrt{x-3}\) + 9 

A = (\(\sqrt{x-3}\))2 - 2.3.\(\sqrt{x-3}\) + 32

A = (\(\sqrt{x-3}\)- 3)2