K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có \(\widehat{B}+\widehat{C}=90^0\)

nên \(sinB=cosC=\dfrac{4}{5}\)

\(sin^2B+cos^2B=1\)

=>\(cos^2B=1-\left(\dfrac{4}{5}\right)^2=\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2\)

=>\(cosB=\dfrac{3}{5}\)

\(tanB=\dfrac{sinB}{cosB}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(cotB=\dfrac{1}{tanB}=\dfrac{3}{4}\)

DT
21 tháng 6 2024

Vì tam giác ABC vuông tại A

Nên: \(\widehat{B}+\widehat{C}=90^o\\ \Rightarrow0^o< \widehat{C}< 90^o\)

\(\Rightarrow0< \sin C< 1\) 

Ta có: \(\sin^2C+\cos^2C=1\Rightarrow\sin^2C=1-\left(\dfrac{4}{5}\right)^2=\dfrac{9}{25}\\ \Rightarrow\sin C=\dfrac{3}{5}\)

Lại có: \(\tan C=\dfrac{\sin C}{\cos C}=\dfrac{\dfrac{3}{5}}{\dfrac{4}{5}}=\dfrac{3}{4}\\ \cot C=\dfrac{1}{\tan C}=\dfrac{4}{3}\)

21 tháng 6 2024

\(5x^2-2x+1=\left(4x-1\right)\sqrt{x^2}+1\)

\(\Rightarrow5x^2-2x=\left(4x-1\right)x\)

\(\Rightarrow5x^2-2x=4x^2-x\)

\(\Rightarrow5x^2-4x^2-2x+x=0\)

\(\Rightarrow x^2-x=0\)

\(\Rightarrow x\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy x=0 hoặc x=1

21 tháng 6 2024

\(\left[{}\begin{matrix}2x+3=x-5\\2x+3=5-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\)

14: Gọi số bộ linh kiện trong 1 ngày tổ B lắp được là x(bộ)

(Điều kiện: \(x\in Z^+\))

Số bộ linh kiện trong 1 ngày tổ A lắp được là x+20(bộ)

Trong 5 ngày, tổ A lắp được 5(x+20)(bộ)

Trong 4 ngày, tổ B lắp được 4x(bộ)

Theo đề, ta có phương trình:

5(x+20)+4x=1900

=>9x=1800

=>x=200(nhận)

vậy: số bộ linh kiện trong 1 ngày tổ B lắp được là 200(bộ)

số bộ linh kiện trong 1 ngày tổ A lắp được là 200+20=220(bộ)

Bài 11:

Gọi số trận thắng của Arsenal mùa đó là x(trận)

(Điều kiện: \(x\in Z^+\))

Số trận hòa mùa đó là 38-x(trận)

Số điểm nhận được cho các trận thắng là 3x(điểm)

Số điểm nhận được cho các trận hòa là 1(38-x)=38-x(điểm)

Tổng số điểm là 90 điểm nên ta có:

3x+38-x=90

=>2x=90-38=52

=>x=26(nhận)

Vậy: Số trận thắng mùa đó của Arsenal là 26 trận

AH
Akai Haruma
Giáo viên
20 tháng 6 2024

Bạn nên ghi hẳn đề ra để mọi người hỗ trợ nhanh hơn nhé.

\(x^2+\sqrt{x^2-3x+5}=3x+7\)

=>\(\sqrt{x^2-3x+5}=x^2-3x-7\)(1)

Đặt \(x^2-3x+5=a\left(a>=\dfrac{11}{4}\right)\)

(1) sẽ trở thành \(\sqrt{a}=a-12\)

=>\(a=\left(a-12\right)^2\)

=>\(a^2-24a+144-a=0\)

=>\(a^2-25a+144=0\)

=>(a-9)(a-16)=0

=>\(\left[{}\begin{matrix}a=9\\a=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x+5=9\\x^2-3x+5=16\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2-3x-4=0\\x^2-3x-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{4;-1\right\}\\x=\dfrac{3\pm\sqrt{53}}{2}\end{matrix}\right.\)

20 tháng 6 2024

đk x >= 4

\(\sqrt{x-2}=x-4\)

\(\Leftrightarrow x-2=\left(x-4\right)^2\Leftrightarrow x^2-8x+16=x-2\)

\(\Leftrightarrow x^2-9x+18=0\Leftrightarrow\left(x-6\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=3\left(l\right)\end{matrix}\right.\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2+AB^2=10^2\)

=>\(2\cdot AB^2=100\)

=>\(AB^2=50\)

=>\(AB=\sqrt{50}=5\sqrt{2}\left(cm\right)\)

Bài 3:

a: \(\left\{{}\begin{matrix}4x+y=2\\\dfrac{4}{3}x+\dfrac{1}{3}y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\\dfrac{4}{3}x+\dfrac{1}{3}\left(2-4x\right)=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2-4x\\\dfrac{4}{3}x+\dfrac{2}{3}-\dfrac{4}{3}x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\\dfrac{2}{3}=1\left(vôlý\right)\end{matrix}\right.\)

=>Hệ phương trình vô nghiệm

b: \(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x+y\sqrt{2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\sqrt{2}\\2y\sqrt{2}+y\sqrt{2}=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3y\sqrt{2}=3\\x=y\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\x=\dfrac{y\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}\cdot\sqrt{2}=1\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\sqrt{2}-5x\sqrt{3}\\x\sqrt{6}-\sqrt{2}\left(2\sqrt{2}-5x\sqrt{3}\right)=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\sqrt{6}-4+5x\sqrt{6}=2\\y=2\sqrt{2}-5x\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\sqrt{6}=6\\y=2\sqrt{2}-5\sqrt{3}\cdot x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y=2\sqrt{2}-5\sqrt{3}\cdot\dfrac{\sqrt{6}}{6}=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5x-4\\3x-\left(5x-4\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5x-4\\-2x+4=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=5\cdot\dfrac{-1}{2}-4=-\dfrac{5}{2}-4=-\dfrac{13}{2}\end{matrix}\right.\)