So sánh: A= 215^215 +1 trên 215^216 +1 và B= 215^214+1 trên 215^215 +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P={(a-3)-[a+3+a+2]}
P={a-3-2a-5}
P=-a-8
Q=[2a+3]-4
Q=2a-1
=>2a-1>-a-8
Hơi tắt nha bn
a) \(2^3-5^3:5^2+12.2^2\)
\(=8-5+12.4\)
\(=8-5+48\)
\(=3+48\)
\(=51\)
b) \(5\left[\left(85-35:7\right):8+90\right]-50\)
\(=5\left[\left(85-5\right):8+90\right]-50\)
\(=5\left[80:8+90\right]-50\)
\(=5\left[10+90\right]-50\)
\(=5.100-50\)
\(=500-50\)
\(=450\)
c) \(2.\left[\left(7-3^3:3^2\right):2^2+99\right]-100\)
\(=2.\left[\left(7-3\right):4+99\right]-100\)
\(=2.\left[4:4+99\right]-100\)
\(=2.\left[1+99\right]-100\)
\(=2.100-100\)
\(=200-100\)
\(=100\)
d) \(2^7:2^2+5^4:5^3.2^4-3.2^5\)
\(=2^5+5.2^4-3.2^5\)
\(=32+5.16-3.32\)
\(=32+80-96\)
\(=112-96\)
\(=16\)
e) \(\left(3^5.3^7\right):3^{10}+5.2^4-7^3:7\)
\(=3^{12}:3^{10}+5.16-7^2\)
\(=3^2+80-49\)
\(=9+80-49\)
\(=89-49\)
\(=40\)
f) \(3^2.\left[\left(5^2-3\right):11\right]-2^4+2.10^3\)
\(=9.\left[\left(25-3\right):11\right]-16+2.1000\)
\(=9.\left[22:11\right]-16+2.1000\)
\(=9.2-16+2.1000\)
\(=18-16+2000\)
\(=2+2000\)
\(=2002\)
\(#WendyDang\)
Lời giải:
a.
\(A=\frac{-5}{2}-\frac{7}{3}-(-8)-9=\frac{-29}{6}+8-9=\frac{-29}{6}-1=-(\frac{29}{6}+1)=\frac{-35}{6}\)
b.
\(B=\frac{3^{11}(9+23)}{3^9.2^5}=\frac{3^{11}.32}{3^9.2^5}=\frac{3^{11}.2^5}{3^9.2^5}=3^2=9\)
Để \(\dfrac{n+4}{n+1}\)nhận giá trị nguyên thì \(n+4⋮n+1\)
\(n+4⋮n+1\\ =>n+1+3⋮n+1\\ =>3⋮n+1\\ n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ =>n\in\left\{-4;-2;0;2\right\}\)
Vậy \(n\in\left\{-4;-2;0;2\right\}\) nên \(n+4⋮n+1\)hay \(\dfrac{n+4}{n+1}\)nhận giá trị nguyên
a) −54 − (36 − 45) = −54 − (−9) = −54 + 9 = −45
b) 26 − (−43 − 33) = 26 − (−76) = 26 + 76 = 102
c) 52 − [31 + (3^0 − 2)] = 52 − [31 + (1 − 2)] = 52 − [31 − 1] = 52 − 30 = 22
d) 1/5 + 1/6 = 6/30 + 5/30 = 11/30
e) 5/7 + 8/14 = 10/14 + 8/14 = 18/14 = 9/7
b) 9/10 + 12/6 = 9/10 + 20/10 = 29/10
k) 5/4 - 7/8 + 6/5 = 50/40 - 35/40 + 48/40 = 63/40