Nếu AM là đường trung tuyến và G là trọng tâm của tam giác ABC thì: A. GM = 1/3 AG B. AM = 2/3 AG C. AG = 1/3 AM D. GM = 1/3 AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
=>MB=MC
b: Xét ΔMBA và ΔMCE có
MB=MC
\(\widehat{BMA}=\widehat{CME}\)(hai góc đối đỉnh)
MA=ME
Do đó: ΔMBA=ΔMCE
=>\(\widehat{MBA}=\widehat{MCE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
PN chung
\(\widehat{KNP}=\widehat{HPN}\)
Do đó: ΔKNP=ΔHPN
b: Ta có: ΔKNP=ΔHPN
=>\(\widehat{KPN}=\widehat{HNP}\)
=>\(\widehat{ENP}=\widehat{EPN}\)
=>ΔENP cân tại E
c: Xét ΔMEN và ΔMEP có
ME chung
EN=EP(ΔENP cân tại E)
MN=MP
Do đó: ΔMEN=ΔMEP
=>\(\widehat{NME}=\widehat{PME}\)
=>ME là phân giác của góc NMP
\(x\cdot\left(x^2-3\right)-x^3+7=0\\ x^3-3x-x^3+7=0\\ -3x+7=0\\ -3x=-7\\ x=\dfrac{7}{3}\)
Tam giác ABC vuông tại B, với BA < BC.
Điểm N trên cạnh AC sao cho AN = AB.
AE là đường vuông góc với BC tại A.
BH là đường cao của tam giác ABC.
Điểm K là giao điểm của BH và AE.
Do tam giác ABC vuông tại B và AN = AB nên tam giác ANB cũng vuông tại N.
Do đó, góc ANB = góc ABC (cùng bằng 90 độ).
Lại có góc ANK = góc ANB (do K nằm trên đường thẳng NB).
Vậy suy ra góc ANK = góc ACB.
F(\(x\)) = 3\(x^3\) - 2\(x^2\) + 1
F(-2) = 3(-2)3 - 2.(-2)2 + 1
F(-2) = -24 - 8 + 1
F(-2) = -32 + 1
F(-2) = -31
a: Chiều rộng khu vườn sau khi mở rộng là x+3(m)
Chiều dài khu vườn sau khi mở rộng là x+10(m)
Diện tích khu vườn sau khi mở rộng là:
\(S=\left(x+3\right)\left(x+10\right)=x^2+13x+30\)(m2)
b: Khi x=20 thì \(S=20^2+13\cdot20+30=690\left(m^2\right)\)
Chọn B
Chọn D nhé