cứu tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\dfrac{1}{1+2}+...+\dfrac{1}{1+2+...+8}\)
\(=\dfrac{2}{2}+\dfrac{1}{2\cdot\dfrac{3}{2}}+...+\dfrac{1}{8\cdot\dfrac{9}{2}}\)
\(=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+...+\dfrac{2}{8\cdot9}\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{8\cdot9}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
\(=2\left(1-\dfrac{1}{9}\right)=2\cdot\dfrac{8}{9}=\dfrac{16}{9}\)
Quãng đường còn lại ứng với phân số là:
1 - \(\dfrac{2}{3}\) = \(\dfrac{1}{3}\) (quãng đường)
Quãng đường còn lại dài số ki-lô-mét là:
42 x \(\dfrac{1}{3}\) = 14 (km)
Kết luận: Quãng đường còn lại dài 14km
Lời giải:
$5^3\equiv -1\pmod 7$
$\Rightarrow 5^{2022}=(5^3)^{674}\equiv (-1)^{674}\equiv 1\pmod 7$
Và: $7^{2023}\equiv 0\pmod 7$
$\Rightarrow 5^{2022}+7^{2023}\equiv 1+0\equiv 1\pmod 7$
Vậy $5^{2022}+7^{2023}$ chia 7 dư 1
Lời giải:
$1234\equiv 1\pmod 9$
$\Rightarrow 1234^{2023}\equiv 1^{2023}\equiv 1\pmod 9$
$\Rightarrow 1234^{2023}-1\equiv 1-1\equiv 0\pmod 9$
Vậy $1234^{2023}-1$ chia 9 dư 0
\(2xy+y-14=4x\)
\(4x-2xy-y+14=0\)
\(\left(4x-2xy\right)-y=-14\)
\(2x\left(2-y\right)+2-y=-14+2\)
\(2x\left(2-y\right)+\left(2-y\right)=-12\)
\(\left(2-y\right)\left(2x+1\right)=-12\)
Mà \(x,y\in Z\)
\(2x+1\) là số nguyên lẻ
\(\Rightarrow2x+1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2x\in\left\{-4;-2;0;2\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)
*) \(x=-2\)
\(\Rightarrow\left(2-y\right)\left[2.\left(-2\right)+1\right]=-12\)
\(\Rightarrow\left(2-y\right).\left(-3\right)=-12\)
\(\Rightarrow2-y=4\)
\(\Rightarrow y=-2\)
\(\Rightarrow\left(x;y\right)=\left(-2;-2\right)\)
*) \(x=-1\)
\(\Rightarrow\left(2-y\right)\left[2.\left(-1\right)+1\right]=-12\)
\(\Rightarrow\left(2-y\right).\left(-1\right)=-12\)
\(\Rightarrow2-y=12\)
\(\Rightarrow y=-10\)
\(\Rightarrow\left(x;y\right)=\left(-1;-10\right)\)
*) \(x=1\)
\(\Rightarrow\left(2-y\right)\left(2.1+1\right)=-12\)
\(\Rightarrow\left(2-y\right).3=-12\)
\(\Rightarrow2-y=-4\)
\(\Rightarrow y=6\)
\(\Rightarrow\left(x;y\right)=\left(1;6\right)\)
*) \(x=0\)
\(\Rightarrow\left(2-y\right)\left(2.0+1\right)=-12\)
\(\Rightarrow\left(2-y\right).1=-12\)
\(\Rightarrow2-y=-12\)
\(\Rightarrow y=14\)
\(\Rightarrow\left(x;y\right)=\left(0;14\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;-2\right);\left(-1;-10\right);\left(-2;-2\right);\left(0;14\right)\right\}\)
Olm chào em, đây là dạng toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em giải dạng này như sau:
Giải:
2\(xy\) + y - 14 = 4\(x\)
(2\(xy\) + y) - 14 = 4\(x\)
y(2\(x\) + 1) = 4\(x\) + 14
y = (4\(x\) + 14) : (2\(x\) + 1)
y \(\in\) Z ⇔ (4\(x\) + 14) ⋮ (2\(x\) + 1)
⇒ (4\(x\) + 2 + 12) ⋮ (2\(x\) + 1)
⇒ [2.(2\(x\) + 1) + 12] ⋮ (2\(x\) + 1)
⇒ 12 ⋮ (2\(x\) + 1)
2\(x\) + 1 \(\in\) Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
2\(x\) + 1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(x\) | -\(\dfrac{13}{2}\) | - \(\dfrac{5}{2}\) | \(\dfrac{-3}{2}\) | -2 | \(\dfrac{-3}{2}\) | -1 | 0 | \(\dfrac{1}{2}\) | 1 | \(\dfrac{5}{2}\) | \(\dfrac{5}{2}\) | \(\dfrac{11}{2}\) |
y = \(\dfrac{4x+14}{2x+1}\) | -2 | -10 | 14 | 6 | ||||||||
\(x;y\in\) Z | loại | loại | loại | loại | loại | loại | loại | loại |
Theo bảng trên ta có: (\(x\); y) = (-2; -2); (-1; -10); (0; 14); (1; 6)
Kết luận: Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-2; -2); (-1; -10); (0; 14); (1; 6)
Bạn cần giúp gì?
chúc bạn may mắn