Cho x là số hữu tỷ. Viết dưới dạng
a) luỹ thừa của x3 b) Luỹ thừa của x5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3^6}=\dfrac{1}{3^4\cdot3^2}=\dfrac{1}{81\cdot9}=\dfrac{1}{729}\)
\(\dfrac{1}{3^6}\) = \(\dfrac{1}{3^4.3^2}\) = \(\dfrac{1}{81.9}\) = \(\dfrac{1}{729}\)
\(\widehat{C}=\widehat{B}+10^0=\widehat{A}+10^0+10^0=\widehat{A}+20^0\)
\(\widehat{D}=\widehat{C}+10^0=\widehat{A}+20^0+10^0=\widehat{A}+30^0\)
Xét tứ giác ABCD có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=>\(\widehat{A}+\widehat{A}+10^0+\widehat{A}+20^0+\widehat{A}+30^0=360^0\)
=>\(4\cdot\widehat{A}=300^0\)
=>\(\widehat{A}=75^0\)
\(\widehat{B}=75^0+10^0=85^0\)
\(\widehat{C}=75^0+20^0=95^0\)
\(\widehat{D}=75^0+30^0=105^0\)
Ngày thứ hai bán được số ki-lô-gam là:
\(748\times\dfrac{1}{4}=187\left(kg\right)\)
Tổng số ki-lô-gam của ngày `1` và ngày `2` là:
`748 + 187 = 935 (kg)`
Ngày thứ ba bán được số ki-lô-gam là:
`1080 - 935 = 145 (kg)`
Đáp số : ...
P/S: Sai nói luôn
giải:
Ngày thứ hai bán được số kg đường là:
748x \(\dfrac{1}{4}\)=187 (kg)
Ngày thứ ba bán được số kg đường là:
1080 - (748+187)= 145 (kg)
Đ/s:
a: \(\dfrac{\left(-1\right)^2}{2^2}=\dfrac{1}{4};\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
Do đó: \(\dfrac{\left(-1\right)^2}{2^2}=\left(-\dfrac{1}{2}\right)^2\)
b: \(\dfrac{3^3}{5^3}=\left(\dfrac{3}{5}\right)^3< \dfrac{3}{5}\)(do \(0< \dfrac{3}{5}< 1\))
d: \(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^4\)
Vì \(0< \dfrac{3}{4}< 1\)
nên \(\left(\dfrac{3}{4}\right)^4< \left(\dfrac{3}{4}\right)^2\)
=>\(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3< \left(\dfrac{3}{4}\right)^2\)
e: \(\left(0,5\right)^6:\left(0,5\right)^2=\left(0,5\right)^{6-2}=\left(0,5\right)^4=\left(0,5\right)^{2\cdot2}=\left[\left(0,5\right)^2\right]^2\)
\(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y-1\right)^2\) (HĐT số 2)
Gọi số sách ở ngăn 2 ban đầu là x(quyển)
Số sách ban đầu ở ngăn 1 là \(\dfrac{10}{7}x\left(quyển\right)\)
Số sách ở ngăn 1 sau khi có thêm 10 quyển là \(\dfrac{10}{7}x+10\left(quyển\right)\)
Số sách ở ngăn 2 sau khi chuyển đi 10 quyển là x-10(quyển)
Số sách ở ngăn 1 lúc sau bằng 12/5 số sách ở ngăn 2 nên ta có:
\(\dfrac{10}{7}x+10=\dfrac{12}{5}\left(x-10\right)\)
=>\(\dfrac{10}{7}x+10=\dfrac{12}{5}x-\dfrac{120}{5}\)
=>\(\dfrac{10}{7}x-\dfrac{12}{5}x=-24-10=-34\)
=>\(\dfrac{-34}{35}x=-34\)
=>x=35(nhận)
Vậy: Số sách ban đầu ở ngăn 2 là 35 quyển
Số sách ban đầu ở ngăn 1 là \(\dfrac{10}{7}\times35=50\left(quyển\right)\)
a: Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)
=>\(\widehat{yOz}+50^0=180^0\)
=>\(\widehat{yOz}=130^0\)
b: Sửa đề: \(\widehat{OKt}=130^0\)
Ta có: \(\widehat{tKO}+\widehat{xOK}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Kt//Ox
\(125>5^{n+1}>25\\ \Rightarrow5^3>5^{n+1}>5^2\\ \Rightarrow3>n+1>2\\ \Rightarrow3-1>n>2-1\\ \Rightarrow2>n>1\)
Mà giữa 2 và 3 không có số tự nhiên nào
=> Không có n thỏa mãn
a: \(x=\left(x^3\right)^{\dfrac{1}{3}}\)
b: \(x=\left(x^5\right)^{\dfrac{1}{5}}\)