K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x=\left(x^3\right)^{\dfrac{1}{3}}\)

b: \(x=\left(x^5\right)^{\dfrac{1}{5}}\)

\(\dfrac{1}{3^6}=\dfrac{1}{3^4\cdot3^2}=\dfrac{1}{81\cdot9}=\dfrac{1}{729}\)

7 tháng 8 2024

  \(\dfrac{1}{3^6}\) = \(\dfrac{1}{3^4.3^2}\) = \(\dfrac{1}{81.9}\) = \(\dfrac{1}{729}\) 

1

\(\widehat{C}=\widehat{B}+10^0=\widehat{A}+10^0+10^0=\widehat{A}+20^0\)

\(\widehat{D}=\widehat{C}+10^0=\widehat{A}+20^0+10^0=\widehat{A}+30^0\)

Xét tứ giác ABCD có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

=>\(\widehat{A}+\widehat{A}+10^0+\widehat{A}+20^0+\widehat{A}+30^0=360^0\)

=>\(4\cdot\widehat{A}=300^0\)

=>\(\widehat{A}=75^0\)

\(\widehat{B}=75^0+10^0=85^0\)

\(\widehat{C}=75^0+20^0=95^0\)

\(\widehat{D}=75^0+30^0=105^0\)

7 tháng 8 2024

Chưa rõ cụ thể em hỏi cái gì?

11 tháng 8 2024

nhờ mn giúp mình viết 1 dãy gồm 10000 số pi với ạ mình cảm ơn

 

4
456
CTVHS
7 tháng 8 2024

Ngày thứ hai bán được số ki-lô-gam là:

\(748\times\dfrac{1}{4}=187\left(kg\right)\)

Tổng số ki-lô-gam của ngày `1` và ngày `2` là:

`748 + 187 = 935 (kg)`

Ngày thứ ba bán được số ki-lô-gam là:

`1080 - 935 = 145 (kg)`

Đáp số : ...

P/S: Sai nói luôn

 

7 tháng 8 2024

giải:

Ngày thứ hai bán được số kg đường là:

          748x \(\dfrac{1}{4}\)=187 (kg)

Ngày thứ ba bán được số kg đường là:

          1080 - (748+187)= 145 (kg)

                                      Đ/s:

a: \(\dfrac{\left(-1\right)^2}{2^2}=\dfrac{1}{4};\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

Do đó: \(\dfrac{\left(-1\right)^2}{2^2}=\left(-\dfrac{1}{2}\right)^2\)

b: \(\dfrac{3^3}{5^3}=\left(\dfrac{3}{5}\right)^3< \dfrac{3}{5}\)(do \(0< \dfrac{3}{5}< 1\))

d: \(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^4\)

Vì \(0< \dfrac{3}{4}< 1\)

nên \(\left(\dfrac{3}{4}\right)^4< \left(\dfrac{3}{4}\right)^2\)

=>\(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3< \left(\dfrac{3}{4}\right)^2\)

e: \(\left(0,5\right)^6:\left(0,5\right)^2=\left(0,5\right)^{6-2}=\left(0,5\right)^4=\left(0,5\right)^{2\cdot2}=\left[\left(0,5\right)^2\right]^2\)

7 tháng 8 2024

cíu với

 

NV
7 tháng 8 2024

\(\left(x+y\right)^2-2\left(x+y\right)+1\)

\(=\left(x+y-1\right)^2\) (HĐT số 2)

Gọi số sách ở ngăn 2 ban đầu là x(quyển)

Số sách ban đầu ở ngăn 1 là \(\dfrac{10}{7}x\left(quyển\right)\)

Số sách ở ngăn 1 sau khi có thêm 10 quyển là \(\dfrac{10}{7}x+10\left(quyển\right)\)

Số sách ở ngăn 2 sau khi chuyển đi 10 quyển là x-10(quyển)

Số sách ở ngăn 1 lúc sau bằng 12/5 số sách ở ngăn 2 nên ta có:

\(\dfrac{10}{7}x+10=\dfrac{12}{5}\left(x-10\right)\)

=>\(\dfrac{10}{7}x+10=\dfrac{12}{5}x-\dfrac{120}{5}\)

=>\(\dfrac{10}{7}x-\dfrac{12}{5}x=-24-10=-34\)

=>\(\dfrac{-34}{35}x=-34\)

=>x=35(nhận)

Vậy: Số sách ban đầu ở ngăn 2 là 35 quyển

Số sách ban đầu ở ngăn 1 là \(\dfrac{10}{7}\times35=50\left(quyển\right)\)

a: Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)

=>\(\widehat{yOz}+50^0=180^0\)

=>\(\widehat{yOz}=130^0\)

b: Sửa đề: \(\widehat{OKt}=130^0\)

Ta có: \(\widehat{tKO}+\widehat{xOK}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Kt//Ox

7 tháng 8 2024

\(125>5^{n+1}>25\\ \Rightarrow5^3>5^{n+1}>5^2\\ \Rightarrow3>n+1>2\\ \Rightarrow3-1>n>2-1\\ \Rightarrow2>n>1\)

Mà giữa 2 và 3 không có số tự nhiên nào 

=> Không có n thỏa mãn