???gghghghgg
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc riêng canô, dòng nước lần lượt là x ; y ( x > y > 0, km/h )
khi đó vân tốc canô đi xuôi dòng là x + y km/h
vận tốc dòng nước đi ngược dòng là x - y km/h
*) Nếu canô xuôi dòng 5km và ngược dòng 9km hết 1 giờ
ta có pt : \(\frac{5}{x+y}+\frac{9}{x-y}=1\)(1)
*) Nếu canô xuôi dòng 10km và ngược dòng 6km hết 1 giờ
ta có pt : \(\frac{10}{x+y}+\frac{6}{x-y}=1\)(2)
Từ (1) ; (2) ta có hệ pt \(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x+y}=t\\\frac{1}{x-y}=u\end{cases}}\)ta có hệ mới \(\hept{\begin{cases}5t+9u=1\\10t+6u=1\end{cases}\Leftrightarrow\hept{\begin{cases}t=\frac{1}{20}\\u=\frac{1}{12}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}2y=8\\x=y+12\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=16\end{cases}}}\)(tm)
Vậy vận tốc canô là 16 km/h
vận tốc dòng nước là 4 km/h
Gọi vận tốc của cano và vận tốc dòng nước lần lượt là \(x,y\left(km/h\right),x>y>0\).
Vận tốc xuôi dòng là: \(x+y\left(km/h\right)\)
Vận tốc ngược dòng là: \(x-y\left(km/h\right)\)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)
Đặt \(a=\frac{1}{x+y},b=\frac{1}{x-y}\)
\(\hept{\begin{cases}5a+9b=1\\10a+6b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{20}\\b=\frac{1}{12}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\)(thỏa mãn)
a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)
⇒MC=MD(2)⇒MC=MD(2)
Mà MA = ME (E đối xứng với A qua M) (3)
Từ (2), (3) ⇒⇒ Tứ giác ACED là hình bình hành (4)
Từ (1), (2) ⇒AB⇒AB là đường trung trực của CD
⇒⇒ Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D ⇒EC=ED⇒EC=ED (5)
Từ (4), (5) ⇒⇒ Tứ giác ACED là hình thoi
b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)
⇒MB=AB−MA=13−4=9(cm)⇒MB=AB−MA=13−4=9(cm)
Theo hệ thức lượng ta có:
MC2 = MA . MB = 4 . 9 = 36
⇔MC=√36=6(cm)⇔MC=36=6(cm)
Từ (2) ⇒MC=MD=CD2⇒MC=MD=CD2
⇔CD=2MC=2.6=12(cm)
em mới học lớp 5 ạ
\(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)(vì \(x,y,z>0\))
\(\Leftrightarrow1=\frac{1}{x}+\frac{4}{4y}+\frac{9}{9z}\ge\frac{\left(1+2+3\right)^2}{x+4y+9z}=\frac{36}{x+4y+9z}\)
\(\Leftrightarrow\frac{1}{x+4y+9z}\le\frac{1}{36}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x}=\frac{2}{4y}=\frac{3}{9z}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\\z=2\end{cases}}\).
A B C I O O'
1/ Ta có
IB=IA=IC (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến hai tiếp điểm bằng nhau
=> tg IAB và tg IAC cân tại I \(\Rightarrow\widehat{IBA}=\widehat{IAB}\) và \(\widehat{ICA}=\widehat{IAC}\)
Xét tg IAB có \(\widehat{AIB}=180^o-\left(\widehat{IBA}+\widehat{IAB}\right)=180^o-2.\widehat{IAB}\) (1)
Xét tg IAC có \(\widehat{AIC}=180^o-\left(\widehat{IAC}+\widehat{ICA}\right)=180^o-2.\widehat{IAC}\) (2)
Công 2 vế của (1) và (2)
\(\Rightarrow\widehat{AIB}+\widehat{AIC}=360^o-2\left(\widehat{IAB}+\widehat{IAC}\right)\)
\(\Rightarrow\widehat{BIC}=180^o=360^o-2\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\) => tg ABC vuông tại A
2/
Ta có
tg AIB cân tại I (cmt)
\(OI\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm)
=> IO là phân giác của \(\widehat{AIB}\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{\widehat{AIB}}{2}\) (trong tg cân đường cao xp từ đỉnh đồng thời là đường phân giác)
C/m tương tự ta cũng có \(\widehat{AIO'}=\widehat{CIO'}=\frac{\widehat{AIC}}{2}\)
\(\Rightarrow\widehat{AIO}+\widehat{AIO'}=\widehat{OIO'}=\frac{\widehat{AIB}+\widehat{AIC}}{2}=\frac{180^o}{2}=90^o\) => tg OIO' vuông tại I
3/
Hai đường tròn tiếp xúc ngoài thì đường nối tâm hai đường tròn đi qua điểm tiếp xúc => O, A, O' thẳng hàng
Xét tg vuông OIO' có
\(IA^2=OA.O'A\) (trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền) \(\Rightarrow IA=\sqrt{OA.OA'}=\sqrt{R.R'}\)
Ta có IB=IA=IC (cmt) => \(IA=\frac{BC}{2}\Rightarrow BC=2.IA=2\sqrt{R.R'}\)