K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

Gọi vận tốc riêng canô, dòng nước lần lượt là x ; y ( x > y > 0, km/h ) 

khi đó vân tốc canô đi xuôi dòng là x + y km/h

vận tốc dòng nước đi ngược dòng là x - y km/h 

*) Nếu canô xuôi dòng 5km và ngược dòng 9km hết 1 giờ 

ta có pt : \(\frac{5}{x+y}+\frac{9}{x-y}=1\)(1) 

*) Nếu canô xuôi dòng 10km và ngược dòng 6km hết 1 giờ 

ta có pt : \(\frac{10}{x+y}+\frac{6}{x-y}=1\)(2) 

Từ (1) ; (2) ta có hệ pt \(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x+y}=t\\\frac{1}{x-y}=u\end{cases}}\)ta có hệ mới \(\hept{\begin{cases}5t+9u=1\\10t+6u=1\end{cases}\Leftrightarrow\hept{\begin{cases}t=\frac{1}{20}\\u=\frac{1}{12}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}2y=8\\x=y+12\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=16\end{cases}}}\)(tm) 

Vậy vận tốc canô là 16 km/h

vận tốc dòng nước là 4 km/h 

DD
8 tháng 12 2021

Gọi vận tốc của cano và vận tốc dòng nước lần lượt là \(x,y\left(km/h\right),x>y>0\).

Vận tốc xuôi dòng là: \(x+y\left(km/h\right)\)

Vận tốc ngược dòng là: \(x-y\left(km/h\right)\)

Ta có hệ phương trình: 

\(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)

Đặt \(a=\frac{1}{x+y},b=\frac{1}{x-y}\)

\(\hept{\begin{cases}5a+9b=1\\10a+6b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{20}\\b=\frac{1}{12}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\)(thỏa mãn) 

26 tháng 5 2022

cái này là bài cấp 1 thầy/cô ơi

 

7 tháng 12 2021

a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)

⇒MC=MD(2)⇒MC=MD(2)

Mà MA = ME (E đối xứng với A qua M) (3)

Từ (2), (3) ⇒⇒ Tứ giác ACED là hình bình hành (4)

Từ (1), (2) ⇒AB⇒AB là đường trung trực của CD

⇒⇒ Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D ⇒EC=ED⇒EC=ED (5)

Từ (4), (5) ⇒⇒ Tứ giác ACED là hình thoi

b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)

⇒MB=AB−MA=13−4=9(cm)⇒MB=AB−MA=13−4=9(cm)

Theo hệ thức lượng ta có:

MC2 = MA . MB = 4 . 9 = 36

⇔MC=√36=6(cm)⇔MC=36=6(cm)

Từ (2) ⇒MC=MD=CD2⇒MC=MD=CD2

⇔CD=2MC=2.6=12(cm)

em mới học lớp 5 ạ

7 tháng 12 2021

giúp mik vs huhuhuhu

DD
8 tháng 12 2021

\(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)(vì \(x,y,z>0\)

\(\Leftrightarrow1=\frac{1}{x}+\frac{4}{4y}+\frac{9}{9z}\ge\frac{\left(1+2+3\right)^2}{x+4y+9z}=\frac{36}{x+4y+9z}\)

\(\Leftrightarrow\frac{1}{x+4y+9z}\le\frac{1}{36}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x}=\frac{2}{4y}=\frac{3}{9z}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\\z=2\end{cases}}\).

8 tháng 12 2021

A B C I O O'

1/ Ta có

IB=IA=IC (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến hai tiếp điểm bằng nhau

=> tg IAB và tg IAC cân tại I \(\Rightarrow\widehat{IBA}=\widehat{IAB}\) và \(\widehat{ICA}=\widehat{IAC}\)

Xét tg IAB có \(\widehat{AIB}=180^o-\left(\widehat{IBA}+\widehat{IAB}\right)=180^o-2.\widehat{IAB}\) (1)

Xét tg IAC có \(\widehat{AIC}=180^o-\left(\widehat{IAC}+\widehat{ICA}\right)=180^o-2.\widehat{IAC}\) (2)

Công 2 vế của (1) và (2)

\(\Rightarrow\widehat{AIB}+\widehat{AIC}=360^o-2\left(\widehat{IAB}+\widehat{IAC}\right)\)

\(\Rightarrow\widehat{BIC}=180^o=360^o-2\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\) => tg ABC vuông tại A

2/

Ta có

tg AIB cân tại I (cmt)

\(OI\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm)

=> IO là phân giác của \(\widehat{AIB}\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{\widehat{AIB}}{2}\) (trong tg cân đường cao xp từ đỉnh đồng thời là đường phân giác)

C/m tương tự ta cũng có \(\widehat{AIO'}=\widehat{CIO'}=\frac{\widehat{AIC}}{2}\)

\(\Rightarrow\widehat{AIO}+\widehat{AIO'}=\widehat{OIO'}=\frac{\widehat{AIB}+\widehat{AIC}}{2}=\frac{180^o}{2}=90^o\) => tg OIO' vuông tại I

3/

Hai đường tròn tiếp xúc ngoài thì đường nối tâm hai đường tròn đi qua điểm tiếp xúc => O, A, O' thẳng hàng

Xét tg vuông OIO' có

\(IA^2=OA.O'A\) (trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền) \(\Rightarrow IA=\sqrt{OA.OA'}=\sqrt{R.R'}\)

Ta có IB=IA=IC (cmt) => \(IA=\frac{BC}{2}\Rightarrow BC=2.IA=2\sqrt{R.R'}\)